Path-MGCN: a pathway activity-based multi-view graph convolutional network for determining spatial domains.

计算机科学 图形 路径(计算) 人工智能 理论计算机科学 计算机网络
作者
Qirui Zhou,Chaowen Li,Chao Chen,Songqing Gu,Weijun Sun,Zongmeng Zhang,Yishan Cai,Yonghui Huang,Hongtao Liu,Chao Yang,Xin Chen
出处
期刊:PubMed 卷期号:26 (4)
标识
DOI:10.1093/bib/bbaf365
摘要

Spatial transcriptomics (ST) comprehensively measure the gene expression profiles while preserving the spatial information. Accumulated computational frameworks have been proposed to identify spatial domains, one of the fundamental tasks of ST data analysis, to understand the tissue architecture. However, current methods often overlook pathway-level functional context and struggle with data sparsity. Therefore, we develop Path-MGCN, a multi-view graph convolutional network (GCN) with attention mechanism, which integrates pathway information. We first calculate spot-level pathway activity scores via gene set variation analysis from gene expression and construct distinct adjacency graphs representing spatial and functional proximity. A multi-view GCN learns spatial, pathway, and shared embeddings adaptively fused by attention and followed by a Zero-inflated negative binomial decoder to retain the original transcriptome information. Comprehensive evaluations across diverse datasets (human dorsolateral prefrontal cortex, breast cancer and mouse brain) at various resolution demonstrate Path-MGCN's superior accuracy and robustness, significantly outperforming state-of-the-art methods and maintaining high performance across different pathway databases (Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, Reactome). Crucially, Path-MGCN enhances biological interpretability, enabling the identification of Tertiary lymphoid structure-like regions and spatially resolved metabolic heterogeneity (hypoxia, glycolysis, AMP-activated protein kinase signaling) linked to tumor progression stages in human breast cancer. By effectively integrating functional context, Path-MGCN advances ST analysis, providing an accurate and interpretable framework to dissect tissue heterogeneity and enables detailed spatial mapping of molecular pathways that highlights potential targeted therapeutic strategies crucial for developing safe and effective synergistic anti-tumor therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的不弱完成签到,获得积分20
2秒前
科研通AI6应助畅快的紫烟采纳,获得10
2秒前
科研通AI6应助畅快的紫烟采纳,获得10
2秒前
sugar应助畅快的紫烟采纳,获得10
2秒前
慕青应助畅快的紫烟采纳,获得10
2秒前
科研通AI5应助畅快的紫烟采纳,获得10
3秒前
科研通AI6应助畅快的紫烟采纳,获得10
3秒前
核桃应助畅快的紫烟采纳,获得10
3秒前
倩倩应助畅快的紫烟采纳,获得10
3秒前
蓝天应助畅快的紫烟采纳,获得10
3秒前
科研通AI2S应助畅快的紫烟采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
壮壮不太壮给壮壮不太壮的求助进行了留言
4秒前
5秒前
123驳回了Claudplz应助
5秒前
just完成签到 ,获得积分20
6秒前
7秒前
haruki发布了新的文献求助30
8秒前
8秒前
10秒前
10秒前
两斤发布了新的文献求助10
13秒前
Re发布了新的文献求助10
13秒前
舒伯特完成签到 ,获得积分10
13秒前
瑰慈完成签到,获得积分10
13秒前
15秒前
黎黎发布了新的文献求助10
15秒前
15秒前
16秒前
冯冯发布了新的文献求助20
16秒前
17秒前
zhao发布了新的文献求助10
20秒前
21秒前
21秒前
奋斗的萝完成签到,获得积分10
23秒前
一番完成签到,获得积分10
23秒前
25秒前
zhao完成签到,获得积分10
27秒前
28秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4292307
求助须知:如何正确求助?哪些是违规求助? 3819000
关于积分的说明 11958959
捐赠科研通 3462519
什么是DOI,文献DOI怎么找? 1899173
邀请新用户注册赠送积分活动 947526
科研通“疑难数据库(出版商)”最低求助积分说明 850282