已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimation of Overall Cyclosporine Exposure Using Machine Learning

最大后验估计 均方误差 药代动力学 统计 医学 曲线下面积 贝叶斯概率 人口 样本量测定 治疗药物监测 公制(单位) 采样(信号处理) 数学 计算机科学 内科学 最大似然 滤波器(信号处理) 经济 环境卫生 计算机视觉 运营管理
作者
Jean‐Baptiste Woillard,Marc Labriffe,Pierre Marquet
出处
期刊:Therapeutic Drug Monitoring [Lippincott Williams & Wilkins]
标识
DOI:10.1097/ftd.0000000000001346
摘要

Background: Cyclosporine (CsA), an immunosuppressant widely used in solid-organ transplantation, requires precise therapeutic drug monitoring to balance its efficacy and toxicity. The interdose area under the concentration–time curve (AUC 0–12 h ) is considered to be a superior metric of drug exposure compared with single concentration measurements but is, nevertheless, resource-intensive. Machine learning (ML) offers a novel approach for AUC prediction by leveraging patient-specific data without relying on traditional pharmacokinetic assumptions. This study intended to develop and evaluate XGBoost ML models for predicting CsA AUC 0–12 h using either two or three blood concentrations and to compare their performance against maximum a posteriori Bayesian estimation (MAP-BE) based on population pharmacokinetic models. Methods: Using data from 2009 patients and 6360 dose-adjustment requests on the Immunosuppressant Bayesian Dose Adjustment website (https://abis.chu-limoges.fr/), supervised ML models were trained with predictors including CsA concentrations at predefined time points (C0, C1, and C3), dose, age, and sampling time deviations. External validation was performed using rich pharmacokinetic profiles of kidney, heart, lung, and bone marrow transplant recipients. Results: The three-sample XGBoost model achieved high accuracy in kidney transplant recipients (root mean square error [RMSE] <3%, RMSE<8.2%), closely matching the MAP-BE performance (rMPE <3%, RMSE <8.7%). The two-sample ML model demonstrated lower precision and higher variability but remained applicable in constrained sampling scenarios. The performance was reduced in heart and lung recipients for both ML and MAP-BE, reflecting the limited representation of these populations in the data set. Conclusions: ML-based AUC prediction is a promising alternative to MAP-BE, particularly for kidney transplantation. Future studies should focus on expanding datasets, incorporating additional transplant types, and refining ML models for broader applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fred发布了新的文献求助10
3秒前
zhangzhang发布了新的文献求助10
4秒前
wanci应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
所所应助科研通管家采纳,获得10
6秒前
6秒前
zhou完成签到,获得积分10
9秒前
AXLL完成签到 ,获得积分10
13秒前
开胃咖喱完成签到,获得积分10
15秒前
小猫来啦完成签到,获得积分10
17秒前
17秒前
Fred完成签到,获得积分10
18秒前
莓莓MM完成签到 ,获得积分10
21秒前
About发布了新的文献求助10
22秒前
情怀应助Rookie采纳,获得10
23秒前
23秒前
默默雪旋完成签到 ,获得积分10
25秒前
27秒前
YAFD发布了新的文献求助10
30秒前
红枫没有微雨怜完成签到 ,获得积分10
31秒前
酷波er应助lizibelle采纳,获得10
33秒前
小凯完成签到 ,获得积分10
34秒前
情怀应助鹭洋采纳,获得30
36秒前
过眼云烟完成签到,获得积分10
42秒前
morena发布了新的文献求助30
43秒前
43秒前
布曲完成签到 ,获得积分10
45秒前
CodeCraft应助About采纳,获得10
46秒前
Rookie发布了新的文献求助10
48秒前
51秒前
nandeyijia应助YAFD采纳,获得10
51秒前
JamesPei应助bbq采纳,获得20
52秒前
xx发布了新的文献求助30
55秒前
zhang完成签到,获得积分10
56秒前
edtaa发布了新的文献求助10
56秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4123993
求助须知:如何正确求助?哪些是违规求助? 3661911
关于积分的说明 11590071
捐赠科研通 3362451
什么是DOI,文献DOI怎么找? 1847535
邀请新用户注册赠送积分活动 911983
科研通“疑难数据库(出版商)”最低求助积分说明 827823