Artificial intelligence, machine learning, and deep learning in liver transplantation

人工智能 背景(考古学) 医学 机器学习 肝移植 移植 候选资格 重症监护医学 计算机科学 外科 政治学 生物 政治 古生物学 法学
作者
Mamatha Bhat,Madhumitha Rabindranath,Beatriz Sordi Chara,Douglas A. Simonetto
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:78 (6): 1216-1233 被引量:71
标识
DOI:10.1016/j.jhep.2023.01.006
摘要

Liver transplantation (LT) is a life-saving treatment for individuals with end-stage liver disease. The management of LT recipients is complex, predominantly because of the need to consider demographic, clinical, laboratory, pathology, imaging, and omics data in the development of an appropriate treatment plan. Current methods to collate clinical information are susceptible to some degree of subjectivity; thus, clinical decision-making in LT could benefit from the data-driven approach offered by artificial intelligence (AI). Machine learning and deep learning could be applied in both the pre- and post-LT settings. Some examples of AI applications pre-transplant include optimising transplant candidacy decision-making and donor-recipient matching to reduce waitlist mortality and improve post-transplant outcomes. In the post-LT setting, AI could help guide the management of LT recipients, particularly by predicting patient and graft survival, along with identifying risk factors for disease recurrence and other associated complications. Although AI shows promise in medicine, there are limitations to its clinical deployment which include dataset imbalances for model training, data privacy issues, and a lack of available research practices to benchmark model performance in the real world. Overall, AI tools have the potential to enhance personalised clinical decision-making, especially in the context of liver transplant medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助Jasper采纳,获得10
4秒前
pluto应助如意的书南采纳,获得30
4秒前
HL发布了新的文献求助10
4秒前
pluto应助如意的书南采纳,获得10
4秒前
bkagyin应助如意的书南采纳,获得10
4秒前
搜集达人应助sun2采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
what发布了新的文献求助10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
李爱国应助大地采纳,获得10
16秒前
17秒前
dimysm完成签到,获得积分10
18秒前
18秒前
Ryjinisfine完成签到 ,获得积分10
20秒前
916应助未完成采纳,获得30
21秒前
21秒前
完美梨愁发布了新的文献求助20
22秒前
fkdbdy发布了新的文献求助10
24秒前
当归完成签到,获得积分10
28秒前
ZJING9完成签到,获得积分10
32秒前
36秒前
sss发布了新的文献求助200
42秒前
43秒前
哈哈哈发布了新的文献求助10
46秒前
领导范儿应助简单的如曼采纳,获得10
46秒前
47秒前
慕青应助fkdbdy采纳,获得10
47秒前
48秒前
大地发布了新的文献求助10
48秒前
51秒前
毒蝎King完成签到,获得积分10
51秒前
NexusExplorer应助土拨鼠采纳,获得10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385