Hepatic vessel segmentation based on 3D swin-transformer with inductive biased multi-head self-attention

计算机科学 体素 分割 人工智能 嵌入 模式识别(心理学) 变压器 图像分割 掷骰子 计算机视觉 数学 几何学 物理 量子力学 电压
作者
Mian Wu,Yuguo Qian,Xiangyun Liao,Qiong Wang,Pheng‐Ann Heng
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:23 (1) 被引量:3
标识
DOI:10.1186/s12880-023-01045-y
摘要

Segmentation of liver vessels from CT images is indispensable prior to surgical planning and aroused a broad range of interest in the medical image analysis community. Due to the complex structure and low-contrast background, automatic liver vessel segmentation remains particularly challenging. Most of the related researches adopt FCN, U-net, and V-net variants as a backbone. However, these methods mainly focus on capturing multi-scale local features which may produce misclassified voxels due to the convolutional operator's limited locality reception field.We propose a robust end-to-end vessel segmentation network called Inductive BIased Multi-Head Attention Vessel Net(IBIMHAV-Net) by expanding swin transformer to 3D and employing an effective combination of convolution and self-attention. In practice, we introduce voxel-wise embedding rather than patch-wise embedding to locate precise liver vessel voxels and adopt multi-scale convolutional operators to gain local spatial information. On the other hand, we propose the inductive biased multi-head self-attention which learns inductively biased relative positional embedding from initialized absolute position embedding. Based on this, we can gain more reliable queries and key matrices.We conducted experiments on the 3DIRCADb dataset. The average dice and sensitivity of the four tested cases were 74.8[Formula: see text] and 77.5[Formula: see text], which exceed the results of existing deep learning methods and improved graph cuts method. The Branches Detected(BD)/Tree-length Detected(TD) indexes also proved the global/local feature capture ability better than other methods.The proposed model IBIMHAV-Net provides an automatic, accurate 3D liver vessel segmentation with an interleaved architecture that better utilizes both global and local spatial features in CT volumes. It can be further extended for other clinical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuyao完成签到,获得积分10
刚刚
我是老大应助DAOXIAN采纳,获得10
2秒前
haizz完成签到 ,获得积分10
2秒前
亚婷儿完成签到,获得积分10
4秒前
5秒前
补药学习完成签到,获得积分10
6秒前
6秒前
要减肥南霜完成签到 ,获得积分10
7秒前
打打应助清脆的书桃采纳,获得10
8秒前
Glufo发布了新的文献求助10
9秒前
学霸宇大王完成签到 ,获得积分10
9秒前
小杜发布了新的文献求助10
11秒前
12秒前
董蓝天完成签到 ,获得积分10
12秒前
14秒前
HDM完成签到,获得积分10
17秒前
CC完成签到,获得积分10
18秒前
deer完成签到,获得积分10
18秒前
我是你爹完成签到,获得积分10
18秒前
刘星星发布了新的文献求助10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
孤独的谷秋完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
20秒前
21秒前
22秒前
小野暖暖发布了新的文献求助10
22秒前
23秒前
可乐应助xuxian采纳,获得10
23秒前
scifff完成签到,获得积分10
24秒前
共享精神应助ZZZ123采纳,获得10
24秒前
阳佟冬卉完成签到,获得积分10
25秒前
居无何完成签到 ,获得积分10
26秒前
lingzhiyi发布了新的文献求助10
26秒前
AAAaa发布了新的文献求助10
26秒前
mirrovo发布了新的文献求助10
27秒前
29秒前
艾科研发布了新的文献求助30
29秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3911371
求助须知:如何正确求助?哪些是违规求助? 3456993
关于积分的说明 10892632
捐赠科研通 3183347
什么是DOI,文献DOI怎么找? 1759596
邀请新用户注册赠送积分活动 851019
科研通“疑难数据库(出版商)”最低求助积分说明 792384