计算机科学
人工神经网络
相变存储器
计算机硬件
计算机体系结构
嵌入式系统
人工智能
相变
工程类
工程物理
作者
Geoffrey W. Burr,Pritish Narayanan,Stefano Ambrogio,Atsuya Okazaki,Hsinyu Tsai,Kohji Hosokawa,Charles Mackin,Akiyo Nomura,Takeo Yasuda,J. Demarest,Kevin Brew,V. Chan,S. Choi,T. Gordon,T. M. Levin,Alexander Friz,Masatoshi Ishii,Yasuteru Kohda,A. Chen,Andrea Fasoli
标识
DOI:10.23919/vlsitechnologyandcir57934.2023.10185411
摘要
Analog non-volatile memory (NVM)-based accelerators for deep neural networks implement multiply-accumulate (MAC) operations – in parallel, on large arrays of resistive devices – by using Ohm's law and Kirchhoff's current law. By completely avoiding weight motion, such fully weight-stationary systems can offer a unique combination of low latency, high throughput, and high energy-efficiency (e.g., high TeraOPS/W). Yet since most Deep Neural Networks (DNNs) require only modest (e.g., 4-bit) precision in synaptic operations, such systems can still deliver "software-equivalent" accuracies on a wide range of models. We describe a 14-nm inference chip, comprising multiple 512×512 arrays of Phase Change Memory (PCM) devices, which can deliver software-equivalent inference accuracy for MNIST handwritten-digit recognition and recurrent LSTM benchmarks, and discuss various PCM challenges such as conductance drift and noise.
科研通智能强力驱动
Strongly Powered by AbleSci AI