亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiple Tasks for Multiple Objectives: A New Multiobjective Optimization Method via Multitask Optimization

多目标优化 计算机科学 数学优化 最优化问题 帕累托原理 约束优化 数学 算法 机器学习
作者
Jian-Yu Li,Zhi‐Hui Zhan,Yun Li,Jun Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:29 (1): 172-186 被引量:20
标识
DOI:10.1109/tevc.2023.3294307
摘要

Handling conflicting objectives and finding multiple Pareto optimal solutions are two challenging issues in solving multiobjective optimization problems (MOPs). Inspired by the efficiency of multitask optimization (MTO) in finding multiple optimal solutions of multitask optimization problem (MTOP), we propose to treat MOP as a MTOP and solve it by using MTO. By transforming the MOP into a MTOP, not only that the difficulty in handling conflicting objectives can be avoided, but also that MTO can help efficiently find well-distributed multiple optimal solutions for MOP. With the above idea, this paper proposes a new multiobjective optimization method via MTO, with the following three contributions. Firstly, a theorem is proposed to theoretically show the relationship between MOP and MTOP and how MOP can be transformed into a MTOP. Secondly, based on the theoretical analysis, a multiple tasks for multiple objectives (MTMO) framework is proposed for solving MOP efficiently. Thirdly, a MTMO-based evolutionary algorithm is developed to solve MOP, together with two novel strategies. One is a target point estimation strategy for transforming the MOP into a MTOP automatically and accurately. The other is an archive-based implicit knowledge transfer strategy for efficiently transferring knowledge across multiple tasks to enhance the optimization results of multiple tasks together. The superiority of the proposed algorithm is validated in extensive experiments on 15 MOPs with objective numbers varying from 3 to 20 and with six state-of-the-art algorithms as competitors. Therefore, solving MOP and even many-objective optimization problem via MTO is a new, promising, and efficient method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
1分钟前
打打应助陶醉的手套采纳,获得30
1分钟前
袁粪到了完成签到 ,获得积分10
3分钟前
科研通AI5应助jyy采纳,获得10
4分钟前
orixero应助活泼的背包采纳,获得10
5分钟前
活泼的背包完成签到,获得积分10
5分钟前
5分钟前
SciGPT应助Tiger采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
jyy发布了新的文献求助10
5分钟前
5分钟前
5分钟前
Tiger发布了新的文献求助10
5分钟前
andrele应助科研通管家采纳,获得10
6分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
末世发布了新的文献求助10
6分钟前
lixuebin完成签到 ,获得积分10
6分钟前
Cathy完成签到,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
Jenny发布了新的文献求助10
7分钟前
Shonso发布了新的文献求助30
7分钟前
7分钟前
英俊的铭应助咸鱼小武采纳,获得10
7分钟前
chenchenchen发布了新的文献求助10
7分钟前
andrele应助科研通管家采纳,获得10
8分钟前
8分钟前
moroa完成签到,获得积分10
8分钟前
8分钟前
咸鱼小武发布了新的文献求助10
8分钟前
咸鱼小武完成签到,获得积分10
8分钟前
冷酷的魂幽完成签到,获得积分10
9分钟前
9分钟前
orixero应助NexerLc采纳,获得10
9分钟前
9分钟前
jyy发布了新的文献求助200
9分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804187
求助须知:如何正确求助?哪些是违规求助? 3349026
关于积分的说明 10341092
捐赠科研通 3065173
什么是DOI,文献DOI怎么找? 1682960
邀请新用户注册赠送积分活动 808557
科研通“疑难数据库(出版商)”最低求助积分说明 764600