MOCNN: A Multiscale Deep Convolutional Neural Network for ERP-Based Brain-Computer Interfaces

卷积神经网络 计算机科学 脑-机接口 人工智能 人机交互 神经科学 心理学 脑电图
作者
Jing Jin,Ruitian Xu,Ian Daly,Xueqing Zhao,Xingyu Wang,Andrzej Cichocki
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (9): 5565-5576 被引量:16
标识
DOI:10.1109/tcyb.2024.3390805
摘要

Event-related potentials (ERPs) reflect neurophysiological changes of the brain in response to external events and their associated underlying complex spatiotemporal feature information is governed by ongoing oscillatory activity within the brain. Deep learning methods have been increasingly adopted for ERP-based brain-computer interfaces (BCIs) due to their excellent feature representation abilities, which allow for deep analysis of oscillatory activity within the brain. Features with higher spatiotemporal frequencies usually represent detailed and localized information, while features with lower spatiotemporal frequencies usually represent global structures. Mining EEG features from multiple spatiotemporal frequencies is conducive to obtaining more discriminative information. A multiscale feature fusion octave convolution neural network (MOCNN) is proposed in this article. MOCNN divides the ERP signals into high-, medium- and low-frequency components corresponding to different resolutions and processes them in different branches. By adding mid- and low-frequency components, the feature information used by MOCNN can be enriched, and the required amount of calculations can be reduced. After successive feature mapping using temporal and spatial convolutions, MOCNN realizes interactive learning among different components through the exchange of feature information among branches. Classification is accomplished by feeding the fused deep spatiotemporal features from various components into a fully connected layer. The results, obtained on two public datasets and a self-collected ERP dataset, show that MOCNN can achieve state-of-the-art ERP classification performance. In this study, the generalized concept of octave convolution is introduced into the field of ERP-BCI research, which allows effective spatiotemporal features to be extracted from multiscale networks through branch width optimization and information interaction at various scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amber完成签到 ,获得积分10
1秒前
萧寒完成签到 ,获得积分20
7秒前
卓矢完成签到 ,获得积分10
8秒前
拿铁小笼包完成签到,获得积分10
11秒前
程住气完成签到 ,获得积分10
15秒前
净禅完成签到 ,获得积分10
26秒前
YuLu完成签到 ,获得积分10
26秒前
明亮梦山完成签到 ,获得积分10
29秒前
33秒前
Tonald Yang完成签到 ,获得积分20
33秒前
Feng5945完成签到 ,获得积分10
37秒前
泥泞完成签到 ,获得积分10
39秒前
WSY完成签到 ,获得积分10
40秒前
Wang完成签到 ,获得积分20
41秒前
雨后完成签到 ,获得积分10
41秒前
shezhinicheng完成签到 ,获得积分10
49秒前
XJ完成签到,获得积分10
52秒前
合适的寄灵完成签到 ,获得积分10
59秒前
dejavu完成签到,获得积分10
1分钟前
小文殊完成签到 ,获得积分10
1分钟前
songge完成签到,获得积分10
1分钟前
嫁个养熊猫的完成签到 ,获得积分10
1分钟前
蓝意完成签到,获得积分0
1分钟前
mzrrong完成签到 ,获得积分10
1分钟前
was_3完成签到,获得积分0
1分钟前
呆萌的小海豚完成签到,获得积分10
1分钟前
1分钟前
lhn完成签到 ,获得积分10
1分钟前
蒲公英完成签到 ,获得积分10
1分钟前
木林森江完成签到 ,获得积分10
1分钟前
学不完也学不会完成签到,获得积分10
1分钟前
扫地888完成签到 ,获得积分10
1分钟前
北城完成签到 ,获得积分10
1分钟前
逆流的鱼完成签到 ,获得积分10
1分钟前
风信子完成签到,获得积分10
1分钟前
文艺的青旋完成签到 ,获得积分10
1分钟前
要笑cc完成签到,获得积分10
1分钟前
牛奶面包完成签到 ,获得积分10
1分钟前
宣宣宣0733完成签到,获得积分10
1分钟前
胡质斌完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792563
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282162
捐赠科研通 3053570
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761481