清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Lead Optimization: Leveraging Generative AI for Structural Modification

生成语法 铅(地质) 计算机科学 人工智能 地质学 地貌学
作者
Odin Zhang,Haitao Lin,Hui Zhang,Huifeng Zhao,Yufei Huang,Yuansheng Huang,Dejun Jiang,Chang‐Yu Hsieh,Peichen Pan,Tingjun Hou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.19230
摘要

The idea of using deep-learning-based molecular generation to accelerate discovery of drug candidates has attracted extraordinary attention, and many deep generative models have been developed for automated drug design, termed molecular generation. In general, molecular generation encompasses two main strategies: de novo design, which generates novel molecular structures from scratch, and lead optimization, which refines existing molecules into drug candidates. Among them, lead optimization plays an important role in real-world drug design. For example, it can enable the development of me-better drugs that are chemically distinct yet more effective than the original drugs. It can also facilitate fragment-based drug design, transforming virtual-screened small ligands with low affinity into first-in-class medicines. Despite its importance, automated lead optimization remains underexplored compared to the well-established de novo generative models, due to its reliance on complex biological and chemical knowledge. To bridge this gap, we conduct a systematic review of traditional computational methods for lead optimization, organizing these strategies into four principal sub-tasks with defined inputs and outputs. This review delves into the basic concepts, goals, conventional CADD techniques, and recent advancements in AIDD. Additionally, we introduce a unified perspective based on constrained subgraph generation to harmonize the methodologies of de novo design and lead optimization. Through this lens, de novo design can incorporate strategies from lead optimization to address the challenge of generating hard-to-synthesize molecules; inversely, lead optimization can benefit from the innovations in de novo design by approaching it as a task of generating molecules conditioned on certain substructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的月饼完成签到 ,获得积分10
5秒前
领导范儿应助yanqing采纳,获得10
5秒前
bkagyin应助mike采纳,获得10
6秒前
幽默书白完成签到,获得积分10
8秒前
蜘蛛道理完成签到 ,获得积分10
17秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
科研通AI5应助丁丁采纳,获得80
24秒前
37秒前
蓝意完成签到,获得积分0
38秒前
丁丁发布了新的文献求助80
45秒前
yuehan完成签到 ,获得积分10
58秒前
我是老大应助cc采纳,获得10
1分钟前
田様应助心怡采纳,获得10
1分钟前
个性仙人掌完成签到 ,获得积分10
1分钟前
vsvsgo完成签到,获得积分10
1分钟前
1分钟前
1分钟前
cc发布了新的文献求助10
1分钟前
心怡发布了新的文献求助10
1分钟前
chichenglin完成签到 ,获得积分10
1分钟前
2分钟前
yellowonion完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
xiaoyi发布了新的文献求助10
2分钟前
mike发布了新的文献求助10
2分钟前
科研通AI5应助丁丁采纳,获得10
2分钟前
Raul完成签到 ,获得积分10
2分钟前
creep2020完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
mike发布了新的文献求助10
2分钟前
imi完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
丁丁发布了新的文献求助10
2分钟前
徐彬荣完成签到 ,获得积分10
2分钟前
3分钟前
星际舟完成签到,获得积分10
3分钟前
敏感的飞松完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776014
求助须知:如何正确求助?哪些是违规求助? 3321534
关于积分的说明 10206239
捐赠科研通 3036609
什么是DOI,文献DOI怎么找? 1666392
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805