Prediction model of pressure injury occurrence in diabetic patients during ICU hospitalization——XGBoost machine learning model can be interpreted based on SHAP

接收机工作特性 机械通风 糖尿病 机器学习 曲线下面积 医学 人工智能 重症监护医学 急诊医学 计算机科学 内科学 内分泌学
作者
Jie Xu,Tie Chen,Xixi Fang,Limin Xia,Xiaoyun Pan
出处
期刊:Intensive and Critical Care Nursing [Elsevier BV]
卷期号:83: 103715-103715 被引量:8
标识
DOI:10.1016/j.iccn.2024.103715
摘要

The occurrence of pressure injury in patients with diabetes during ICU hospitalization can result in severe complications, including infections and non-healing wounds. The aim of this study was to predict the occurrence of pressure injury in ICU patients with diabetes using machine learning models. In this study, LASSO regression was used for feature screening, XGBoost was employed for machine learning model construction, ROC curve analysis, calibration curve analysis, clinical decision curve analysis, sensitivity, specificity, accuracy, and F1 score were used for evaluating the model's performance. Out of the 503 ICU patients with diabetes included in the study, pressure injury developed in 170 cases, resulting in an incidence rate of 33.8 %. The XGBoost model had a higher AUC for predicting pressure injury in patients with diabetes during ICU hospitalization (train: 0.896, 95 %CI: 0.863 to 0.929; test: 0.835, 95 % CI: 0.761–0.908). The importance of SHAP variables in the model from high to low was: 'Days in ICU', 'Mechanical Ventilation', 'Neutrophil Count', 'Consciousness', 'Glucose', and 'Warming Blanket'. The XGBoost machine learning model we constructed has shown high performance in predicting the occurrence of pressure injury in ICU patients with diabetes. Additionally, the SHAP method enables the interpretation of the results provided by the machine learning model. Improve the ability to predict the early occurrence of pressure injury in diabetic patients in the ICU. This will enable clinicians to intervene early and reduce the occurrence of complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GAS关闭了GAS文献求助
刚刚
无奈的qie发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
sciscisci发布了新的文献求助10
刚刚
刚刚
Kate完成签到,获得积分10
1秒前
1秒前
完美世界应助euphoria采纳,获得10
1秒前
大个应助kurtlin采纳,获得10
1秒前
传奇3应助poem采纳,获得10
1秒前
1秒前
animenz完成签到,获得积分10
1秒前
在水一方应助长情钧采纳,获得10
2秒前
共享精神应助朴素的如豹采纳,获得10
2秒前
2秒前
在水一方应助靓丽代柔采纳,获得10
3秒前
CipherSage应助李昶采纳,获得10
3秒前
研友_VZG7GZ应助hah采纳,获得30
4秒前
打打应助trxie采纳,获得10
4秒前
怪味薯片发布了新的文献求助10
4秒前
5秒前
5秒前
ceng发布了新的文献求助10
5秒前
梁三柏发布了新的文献求助10
6秒前
搜集达人应助开心浩阑采纳,获得10
6秒前
7秒前
柚木发布了新的文献求助10
8秒前
33完成签到,获得积分10
8秒前
壮观的思远完成签到,获得积分10
8秒前
9秒前
高兴新梅发布了新的文献求助30
9秒前
李健应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Jiang应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939187
求助须知:如何正确求助?哪些是违规求助? 3485233
关于积分的说明 11031847
捐赠科研通 3215044
什么是DOI,文献DOI怎么找? 1777049
邀请新用户注册赠送积分活动 863257
科研通“疑难数据库(出版商)”最低求助积分说明 798787