Prediction model of pressure injury occurrence in diabetic patients during ICU hospitalization——XGBoost machine learning model can be interpreted based on SHAP

接收机工作特性 机械通风 糖尿病 机器学习 曲线下面积 医学 人工智能 重症监护医学 急诊医学 计算机科学 内科学 内分泌学
作者
Jie Xu,Tie Chen,Xixi Fang,Limin Xia,Xiaoyun Pan
出处
期刊:Intensive and Critical Care Nursing [Elsevier]
卷期号:83: 103715-103715 被引量:17
标识
DOI:10.1016/j.iccn.2024.103715
摘要

The occurrence of pressure injury in patients with diabetes during ICU hospitalization can result in severe complications, including infections and non-healing wounds. The aim of this study was to predict the occurrence of pressure injury in ICU patients with diabetes using machine learning models. In this study, LASSO regression was used for feature screening, XGBoost was employed for machine learning model construction, ROC curve analysis, calibration curve analysis, clinical decision curve analysis, sensitivity, specificity, accuracy, and F1 score were used for evaluating the model's performance. Out of the 503 ICU patients with diabetes included in the study, pressure injury developed in 170 cases, resulting in an incidence rate of 33.8 %. The XGBoost model had a higher AUC for predicting pressure injury in patients with diabetes during ICU hospitalization (train: 0.896, 95 %CI: 0.863 to 0.929; test: 0.835, 95 % CI: 0.761–0.908). The importance of SHAP variables in the model from high to low was: 'Days in ICU', 'Mechanical Ventilation', 'Neutrophil Count', 'Consciousness', 'Glucose', and 'Warming Blanket'. The XGBoost machine learning model we constructed has shown high performance in predicting the occurrence of pressure injury in ICU patients with diabetes. Additionally, the SHAP method enables the interpretation of the results provided by the machine learning model. Improve the ability to predict the early occurrence of pressure injury in diabetic patients in the ICU. This will enable clinicians to intervene early and reduce the occurrence of complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助湘莲采纳,获得10
刚刚
壮观冷卉发布了新的文献求助10
1秒前
球球发布了新的文献求助10
1秒前
aa完成签到,获得积分10
2秒前
2秒前
wanci应助文艺代灵采纳,获得10
3秒前
豆芽菜发布了新的文献求助10
3秒前
4秒前
4秒前
浮游应助daijk采纳,获得10
4秒前
5秒前
dgq_81完成签到,获得积分10
5秒前
5秒前
dgz应助好大一只小坏蛋采纳,获得100
8秒前
加菲丰丰举报求助违规成功
9秒前
杀出个黎明举报求助违规成功
9秒前
HeAuBook举报求助违规成功
9秒前
9秒前
牛油果完成签到 ,获得积分10
10秒前
10秒前
天大-小浩发布了新的文献求助10
10秒前
liuwenjie发布了新的文献求助10
10秒前
11秒前
科目三应助湘崽丫采纳,获得30
11秒前
鸡狗不如完成签到,获得积分10
11秒前
12秒前
Scout发布了新的文献求助10
12秒前
bingyv完成签到 ,获得积分10
12秒前
桐桐应助sleep采纳,获得10
13秒前
慕青应助LYH采纳,获得10
13秒前
14秒前
XR发布了新的文献求助10
14秒前
镓氧锌钇铀应助jingle采纳,获得10
15秒前
牛油果发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
犹豫的铅笔完成签到,获得积分10
15秒前
加菲丰丰举报求助违规成功
16秒前
杀出个黎明举报求助违规成功
16秒前
HeAuBook举报求助违规成功
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5487055
求助须知:如何正确求助?哪些是违规求助? 4586551
关于积分的说明 14409745
捐赠科研通 4517224
什么是DOI,文献DOI怎么找? 2475174
邀请新用户注册赠送积分活动 1460997
关于科研通互助平台的介绍 1434012