Prediction model of pressure injury occurrence in diabetic patients during ICU hospitalization——XGBoost machine learning model can be interpreted based on SHAP

接收机工作特性 机械通风 糖尿病 机器学习 曲线下面积 医学 人工智能 重症监护医学 急诊医学 计算机科学 内科学 内分泌学
作者
Jie Xu,Tie Chen,Xixi Fang,Limin Xia,Xiaoyun Pan
出处
期刊:Intensive and Critical Care Nursing [Elsevier BV]
卷期号:83: 103715-103715 被引量:6
标识
DOI:10.1016/j.iccn.2024.103715
摘要

The occurrence of pressure injury in patients with diabetes during ICU hospitalization can result in severe complications, including infections and non-healing wounds. The aim of this study was to predict the occurrence of pressure injury in ICU patients with diabetes using machine learning models. In this study, LASSO regression was used for feature screening, XGBoost was employed for machine learning model construction, ROC curve analysis, calibration curve analysis, clinical decision curve analysis, sensitivity, specificity, accuracy, and F1 score were used for evaluating the model's performance. Out of the 503 ICU patients with diabetes included in the study, pressure injury developed in 170 cases, resulting in an incidence rate of 33.8 %. The XGBoost model had a higher AUC for predicting pressure injury in patients with diabetes during ICU hospitalization (train: 0.896, 95 %CI: 0.863 to 0.929; test: 0.835, 95 % CI: 0.761–0.908). The importance of SHAP variables in the model from high to low was: 'Days in ICU', 'Mechanical Ventilation', 'Neutrophil Count', 'Consciousness', 'Glucose', and 'Warming Blanket'. The XGBoost machine learning model we constructed has shown high performance in predicting the occurrence of pressure injury in ICU patients with diabetes. Additionally, the SHAP method enables the interpretation of the results provided by the machine learning model. Improve the ability to predict the early occurrence of pressure injury in diabetic patients in the ICU. This will enable clinicians to intervene early and reduce the occurrence of complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
knight7m完成签到 ,获得积分10
1秒前
留胡子的之云完成签到,获得积分10
2秒前
研友_8Y2M0L发布了新的文献求助10
2秒前
wanci应助繁星采纳,获得10
3秒前
relink完成签到,获得积分10
3秒前
111发布了新的文献求助10
3秒前
糊涂的不尤完成签到 ,获得积分10
5秒前
5秒前
李健应助暗月皇采纳,获得10
7秒前
上官若男应助英勇雅琴采纳,获得10
7秒前
景泰蓝完成签到,获得积分10
10秒前
研友_8Y2M0L完成签到,获得积分10
10秒前
XXGG完成签到 ,获得积分10
11秒前
12秒前
亲亲完成签到,获得积分10
13秒前
繁星完成签到,获得积分20
13秒前
大树完成签到 ,获得积分10
13秒前
研友_VZG7GZ应助研友_8Y2M0L采纳,获得10
14秒前
14秒前
16秒前
秀丽笑容完成签到,获得积分10
18秒前
吴大打完成签到,获得积分10
20秒前
iNk应助jiangyao采纳,获得10
20秒前
翻斗花园612完成签到,获得积分10
21秒前
樊尔风发布了新的文献求助10
21秒前
22秒前
die完成签到 ,获得积分10
24秒前
wys完成签到 ,获得积分10
27秒前
吴大打发布了新的文献求助10
28秒前
29秒前
30秒前
樊尔风发布了新的文献求助10
31秒前
哈哈哈哈完成签到,获得积分10
31秒前
孙雪冰完成签到,获得积分20
32秒前
英勇雅琴发布了新的文献求助10
33秒前
科研通AI5应助科研通管家采纳,获得200
34秒前
香蕉觅云应助科研通管家采纳,获得10
34秒前
XSCOOP发布了新的文献求助25
34秒前
斯文败类应助科研通管家采纳,获得50
34秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751