Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists

医学 无线电技术 放射科 乳房磁振造影 乳房成像 磁共振成像 乳腺肿瘤 多中心研究 乳腺癌 病理 乳腺摄影术 内科学 癌症 随机对照试验
作者
Tao Yu,Renqiang Yu,Mengqi Liu,Xinyu Wang,Jichuan Zhang,Yineng Zheng,Fajin Lv
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:177: 111556-111556 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111556
摘要

Purpose To conduct the fusion of radiomics and deep transfer learning features from the intratumoral and peritumoral areas in breast DCE-MRI images to differentiate between benign and malignant breast tumors, and to compare the diagnostic accuracy of this fusion model against the assessments made by experienced radiologists. Materials and Methods This multi-center study conducted a retrospective analysis of DCE-MRI images from 330 women diagnosed with breast cancer, with 138 cases categorized as benign and 192 as malignant. The training and internal testing sets comprised 270 patients from center 1, while the external testing cohort consisted of 60 patients from center 2. A fusion feature set consisting of radiomics features and deep transfer learning features was constructed from both intratumoral (ITR) and peritumoral (PTR) areas. The Least absolute shrinkage and selection operator (LASSO) based support vector machine was chosen as the classifier by comparing its performance with five other machine learning models. The diagnostic performance and clinical usefulness of fusion model were verified and assessed through the area under the receiver operating characteristics (ROC) and decision curve analysis. Additionally, the performance of the fusion model was compared with the diagnostic assessments of two experienced radiologists to evaluate its relative accuracy. The study strictly adhered to CLEAR and METRICS guidelines for standardization to ensure rigorous and reproducible methods. Results The findings show that the fusion model, utilizing radiomics and deep transfer learning features from the ITR and PTR, exhibited exceptional performance in classifying breast tumors, achieving AUCs of 0.950 in the internal testing set and 0.921 in the external testing set. This performance significantly surpasses that of models relying on singular regional radiomics or deep transfer learning features alone. Moreover, the fusion model demonstrated superior diagnostic accuracy compared to the evaluations conducted by two experienced radiologists, thereby highlighting its potential to support and enhance clinical decision-making in the differentiation of benign and malignant breast tumors. Conclusion The fusion model, combining multi-regional radiomics with deep transfer learning features, not only accurately differentiates between benign and malignant breast tumors but also outperforms the diagnostic assessments made by experienced radiologists. This underscores the model's potential as a valuable tool for improving the accuracy and reliability of breast tumor diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净博涛完成签到 ,获得积分10
1秒前
风趣秋白完成签到,获得积分10
3秒前
HalfGumps完成签到,获得积分10
5秒前
危机的芸完成签到 ,获得积分10
6秒前
缓慢的可乐完成签到,获得积分10
6秒前
7秒前
edtaa完成签到 ,获得积分10
7秒前
过时的明辉完成签到,获得积分10
7秒前
11秒前
cdercder应助魏伯安采纳,获得10
12秒前
12秒前
优雅冰蝶完成签到,获得积分10
12秒前
kekekelili完成签到,获得积分10
12秒前
雪花羔完成签到,获得积分10
13秒前
害羞便当完成签到 ,获得积分10
13秒前
Kawhichan完成签到,获得积分10
13秒前
Jay发布了新的文献求助30
14秒前
tdtk发布了新的文献求助10
15秒前
轻松小张应助Alex采纳,获得30
15秒前
雪花羔发布了新的文献求助10
16秒前
夜曦完成签到 ,获得积分10
16秒前
Accept2024发布了新的文献求助10
16秒前
独孤阳光完成签到,获得积分10
17秒前
Angela完成签到,获得积分10
17秒前
20秒前
cuishuai完成签到,获得积分10
22秒前
GD完成签到,获得积分10
23秒前
GGBond完成签到,获得积分10
23秒前
九月完成签到,获得积分10
24秒前
24秒前
Alex完成签到,获得积分10
25秒前
木之木完成签到,获得积分10
25秒前
YOYOYO完成签到,获得积分10
26秒前
Anjianfubai发布了新的文献求助10
26秒前
稳重奇异果应助好久不见采纳,获得10
26秒前
科研通AI5应助魏白晴采纳,获得30
27秒前
谢富杰发布了新的文献求助30
29秒前
zzz完成签到,获得积分10
30秒前
mmyhn发布了新的文献求助10
31秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213925
捐赠科研通 3038575
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290