Multimodal PEAR Chain-of-Thought Reasoning for Multimodal Sentiment Analysis

计算机科学 人工智能 自然语言处理 代表(政治) 水准点(测量) 情绪分析 判别式 过程(计算) 机器学习 大地测量学 政治 政治学 法学 地理 操作系统
作者
Yan Li,Xiangyuan Lan,Haifeng Chen,Ke Lü,Dongmei Jiang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3672398
摘要

Multimodal sentiment analysis aims to predict sentiments from multimodal signals such as audio, video, and text. Existing methods often rely on Pre-trained Language Models (PLMs) to extract semantic information from textual data, lacking an in-depth understanding of the logical relationships within the text modality . This paper introduces the Multimodal PEAR Chain-of-Thought (MM-PEAR-CoT) reasoning for multimodal sentiment analysis. Inspired by the human thought process when solving complex problems, the PEAR (Preliminaries, quEstion, Answer, Reason) chain-of-thought prompt is first proposed to induce Large Language Models (LLMs) to generate text-based reasoning processes and zero-shot sentiment prediction results. However, text-based chain-of-thought reasoning is not always reliable and might contain irrational steps due to the hallucinations of large language models . To address this, we further design the Cross-Modal Filtering and Fusion (CMFF) module. The filtering submodule utilizes audio and visual modalities to suppress irrational steps in the chain of thought, while the fusion submodule integrates high-level reasoning information and cross-modal complementary information in the process of semantic representation learning. Experimental results on two multimodal sentiment analysis benchmark datasets show that high-level reasoning information can help learn discriminative text representation, and cross-modal complementary information can avoid misleading by unreasonable steps in the chain of thought. MM-PEAR-CoT achieves the best results on both datasets, with improvements of 2.2% and 1.7% in binary classification accuracy on the CMU-MOSI and CMU-MOSEI datasets, respectively. To the best of our knowledge, this is the first study to apply chain-of-thought reasoning to multimodal sentiment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WangYanjie发布了新的文献求助10
刚刚
刚刚
漠池完成签到,获得积分10
1秒前
chenzi发布了新的文献求助10
2秒前
111222333完成签到 ,获得积分10
2秒前
3秒前
故意的小熊猫完成签到 ,获得积分10
3秒前
3秒前
爱学习完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
刘cl发布了新的文献求助30
5秒前
十三应助yang采纳,获得20
6秒前
awslsdl发布了新的文献求助10
6秒前
6秒前
杭城发布了新的文献求助10
6秒前
深海鳕鱼完成签到,获得积分10
7秒前
斯文败类应助liunshi采纳,获得10
7秒前
爱学习发布了新的文献求助10
7秒前
纯真含灵完成签到,获得积分10
7秒前
郭一完成签到,获得积分10
8秒前
8秒前
9秒前
kkt发布了新的文献求助10
9秒前
十字勋章完成签到,获得积分10
10秒前
10秒前
11秒前
李爱国应助专一的惜霜采纳,获得10
11秒前
沐屿宸发布了新的文献求助10
12秒前
丘比特应助叶子采纳,获得10
12秒前
ding应助迷人的富采纳,获得10
12秒前
烤鱼片发布了新的文献求助10
14秒前
xiaoE发布了新的文献求助10
14秒前
15秒前
17秒前
VENTUS完成签到,获得积分10
18秒前
kkt完成签到,获得积分10
18秒前
bkagyin应助Cold-Drink-Shop采纳,获得10
18秒前
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793552
求助须知:如何正确求助?哪些是违规求助? 3338512
关于积分的说明 10289946
捐赠科研通 3054952
什么是DOI,文献DOI怎么找? 1676225
邀请新用户注册赠送积分活动 804261
科研通“疑难数据库(出版商)”最低求助积分说明 761812