Machine Learning Algorithms for Smart Gas Sensor Arrays

计算机科学 人工智能 机器学习
作者
Vishnu Nath,Somalapura Prakasha Bharath,Aaron D’Souza,S. Angappane
出处
期刊:Advanced structured materials 卷期号:: 185-225
标识
DOI:10.1007/978-981-97-1390-5_8
摘要

Recently, the growth of technologies has resulted in many advancements in the field of gas sensing, one of which is the concept of an electronic nose (known as e-nose) that mimics the olfactory system in the mammalian nose. The e-nose system is developed from a set of gas sensors; however, the notion of the e-nose becomes complete only when the idea of a machine learning (ML) algorithm is implemented. This is because ML algorithms precisely control the e-nose by analyzing the sensor array output data. The development of ML techniques facilitates the analysis of massive volumes of data generated from sensor arrays in the presence of different analyte gases and environmental factors (temperature, humidity, etc.) and then helps to introduce a smart sensor system for various applications. The recent progress in ML techniques has not only simplified the complexity of data from sensor arrays but also improved the potential of e-nose systems by enabling them to accurately classify and predict the type of analyte gas molecules and their concentration. Modern e-nose systems are substantially superior to animal noses since they can predict gas molecule concentrations and detect odorless gases. Therefore, in addition to focusing on material selection and sensor fabrication, it is critical to understand the progress in ML techniques and their impact on the field of gas sensing. Unfortunately, there are very few articles to explain the studies based on ML algorithms and their potential for developing an e-nose system. Herein, a comprehensive review of the ML algorithms and their role in developing an e-nose system is presented. This chapter begins with a journey of ML algorithms such as supervised, unsupervised, and neural network algorithms that are relevant to developing e-nose and discusses the basic idea of each algorithm. Then subsequent sections provide an overview of the role of different ML algorithms in the e-nose system used for various practical applications, including environmental monitoring, food processing, and disease diagnosis. Finally, an outlook on the challenges in employing ML algorithms in e-nose systems and their current progress is discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弟弟可不止是条狗关注了科研通微信公众号
刚刚
宾克斯发布了新的文献求助10
刚刚
lgj666完成签到,获得积分20
刚刚
poppysss完成签到,获得积分10
1秒前
JR发布了新的文献求助10
2秒前
夜信完成签到,获得积分10
2秒前
dique3hao完成签到 ,获得积分10
2秒前
3秒前
大大彬完成签到 ,获得积分10
4秒前
周周完成签到 ,获得积分10
6秒前
单纯的小土豆完成签到,获得积分10
7秒前
冷静剑成完成签到,获得积分10
7秒前
zjx0925发布了新的文献求助10
8秒前
沉默的婴完成签到 ,获得积分10
9秒前
9秒前
11秒前
11秒前
Fengzhen007完成签到,获得积分10
11秒前
樱香音子发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
夜雨诗意完成签到,获得积分10
15秒前
直率白秋发布了新的文献求助10
15秒前
zjx0925完成签到,获得积分10
16秒前
神勇静枫完成签到,获得积分10
17秒前
温柔的捕发布了新的文献求助10
17秒前
陈一完成签到 ,获得积分10
17秒前
欧欧欧导完成签到,获得积分10
18秒前
g7001完成签到,获得积分10
18秒前
渣渣辉发布了新的文献求助30
18秒前
单纯的爆米花完成签到,获得积分10
18秒前
小张发布了新的文献求助10
18秒前
阿宝完成签到,获得积分10
19秒前
青街向晚完成签到,获得积分10
19秒前
白枫完成签到 ,获得积分10
23秒前
Lanny完成签到 ,获得积分10
24秒前
AFF完成签到,获得积分10
24秒前
Beyond完成签到,获得积分10
25秒前
wenhuanwenxian完成签到 ,获得积分10
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804283
求助须知:如何正确求助?哪些是违规求助? 3349074
关于积分的说明 10341425
捐赠科研通 3065204
什么是DOI,文献DOI怎么找? 1682984
邀请新用户注册赠送积分活动 808587
科研通“疑难数据库(出版商)”最低求助积分说明 764600