Machine Learning Potential Model Based on Ensemble Bispectrum Feature Selection and Its Applicability Analysis

双谱 超参数 计算机科学 人工智能 特征选择 特征(语言学) 计算复杂性理论 机器学习 集成学习 降维 模式识别(心理学) 算法 语言学 电信 哲学 光谱密度
作者
Jiawei Jiang,Li-Chun Xu,Fenglian Li,Jian-Li Shao
出处
期刊:Metals [MDPI AG]
卷期号:13 (1): 169-169 被引量:6
标识
DOI:10.3390/met13010169
摘要

With the continuous improvement of machine learning methods, building the interatomic machine learning potential (MLP) based on the datasets from quantum mechanics calculations has become an effective technical approach to improving the accuracy of classical molecular dynamics simulation. The Spectral Neighbor Analysis Potential (SNAP) is one of the most commonly used machine learning potentials. It uses the bispectrum to encode the local environment of each atom in the lattice. The hyperparameter jmax controls the mapping complexity and precision between the local environment and the bispectrum descriptor. As the hyperparameter jmax increases, the description will become more accurate, but the number of parameters in the bispectrum descriptor will increase dramatically, increasing the computational complexity. In order to reduce the computational complexity without losing the computational accuracy, this paper proposes a two-level ensemble feature selection method (EFS) for a bispectrum descriptor, combining the perturbation method and the feature selector ensemble strategy. Based on the proposed method, the feature subset is selected from the original dataset of the bispectrum descriptor for building the dimension-reduced MLP. As a method application and validation, the data of Fe, Ni, Cu, Li, Mo, Si, and Ge metal elements are used to train the linear regression model based on SNAP for predicting these metals’ atomic energies and forces them to evaluate the performance of the feature subsets. The experimental results show that, compared to the features of SNAP and qSNAP, the training complexity improvement of our EFS method on the qSNAP feature is more effective than SNAP. Compared with the existing methods, when the feature subset size is 0.7 times that of the original features, the proposed EFS method based on the SSWRP ensemble strategy can achieve the best performance in terms of stability, achieving an average stability of 0.94 across all datasets. The training complexity of the linear regression model is reduced by about half, and the prediction complexity is reduced by about 30%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Light完成签到,获得积分10
刚刚
刚刚
mly发布了新的文献求助10
1秒前
1秒前
gjm发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
打打应助俊逸成危采纳,获得10
4秒前
漫漫发布了新的文献求助10
4秒前
好运连连发布了新的文献求助20
4秒前
眯眯眼的曲奇完成签到,获得积分20
5秒前
7秒前
gjm完成签到,获得积分10
8秒前
无定发布了新的文献求助10
8秒前
迅速不二完成签到,获得积分10
8秒前
8秒前
香香香发布了新的文献求助10
9秒前
多加芝士发布了新的文献求助10
10秒前
10秒前
CipherSage应助wrzymh采纳,获得10
10秒前
无定完成签到,获得积分10
12秒前
12秒前
12秒前
牛马发布了新的文献求助10
13秒前
土豪的幻珊完成签到,获得积分20
13秒前
明子发布了新的文献求助10
13秒前
13秒前
13秒前
隐形曼青应助Ye13采纳,获得10
13秒前
14秒前
16秒前
房恩羽发布了新的文献求助10
16秒前
情怀应助漫漫采纳,获得10
18秒前
18秒前
18秒前
所所应助多加芝士采纳,获得10
18秒前
19秒前
星星亮应助数值分析采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553228
求助须知:如何正确求助?哪些是违规求助? 4637790
关于积分的说明 14651067
捐赠科研通 4579694
什么是DOI,文献DOI怎么找? 2511796
邀请新用户注册赠送积分活动 1486761
关于科研通互助平台的介绍 1457676