A Deep Learning Model for Predicting Molecular Subtype of Breast Cancer by Fusing Multiple Sequences of DCE-MRI From Two Institutes

乳腺癌 人工智能 深度学习 计算生物学 计算机科学 癌症 医学 医学物理学 内科学 生物
作者
Xiaoyang Xie,Haowen Zhou,Mingze Ma,Ji Nie,Weibo Gao,Jinman Zhong,Xin Cao,Xiaowei He,Jinye Peng,Yuqing Hou,Fengjun Zhao,Xin Chen
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (9): 3479-3488 被引量:2
标识
DOI:10.1016/j.acra.2024.03.002
摘要

Rationale and Objectives

To evaluate the performance of deep learning (DL) in predicting different breast cancer molecular subtypes using DCE-MRI from two institutes.

Materials and Methods

This retrospective study included 366 breast cancer patients from two institutes, divided into training (n = 292), validation (n = 49) and testing (n = 25) sets. We first transformed the public DCE-MRI appearance to ours to alleviate small-data-size and class-imbalance issues. Second, we developed a multi-branch convolutional-neural-network (MBCNN) to perform molecular subtype prediction. Third, we assessed the MBCNN with different regions of interest (ROIs) and fusion strategies, and compared it to previous DL models. Area under the curve (AUC) and accuracy (ACC) were used to assess different models. Delong-test was used for the comparison of different groups.

Results

MBCNN achieved the optimal performance under intermediate fusion and ROI size of 80 pixels with appearance transformation. It outperformed CNN and convolutional long-short-term-memory (CLSTM) in predicting luminal B, HER2-enriched and TN subtypes, but without demonstrating statistical significance except against CNN in TN subtypes, with testing AUCs of 0.8182 vs. [0.7208, 0.7922] (p=0.44, 0.80), 0.8500 vs. [0.7300, 0.8200] (p=0.36, 0.70) and 0.8900 vs. [0.7600, 0.8300] (p=0.03, 0.63), respectively. When predicting luminal A, MBCNN outperformed CNN with AUCs of 0.8571 vs. 0.7619 (p=0.08) without achieving statistical significance, and is comparable to CLSTM. For four-subtype prediction, MBCNN achieved an ACC of 0.64, better than CNN and CLSTM models with ACCs of 0.48 and 0.52, respectively.

Conclusion

Developed DL model with the feature extraction and fusion of DCE-MRI from two institutes enabled preoperative prediction of breast cancer molecular subtypes with high diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴梦菡完成签到,获得积分10
刚刚
刚刚
纠纠完成签到,获得积分10
2秒前
慕青应助球球采纳,获得10
2秒前
小h完成签到,获得积分10
4秒前
八号向日葵完成签到 ,获得积分10
4秒前
zhu发布了新的文献求助30
6秒前
7秒前
JIANYOUFU完成签到,获得积分10
9秒前
妖精完成签到 ,获得积分10
10秒前
爱吃橙子的苹果水关注了科研通微信公众号
10秒前
Lucas应助迷人灵采纳,获得10
10秒前
11秒前
小蘑菇应助悬夜采纳,获得10
11秒前
13秒前
任康发布了新的文献求助10
13秒前
清茶旧友完成签到,获得积分10
17秒前
tdtk发布了新的文献求助10
18秒前
Mandy发布了新的文献求助10
18秒前
18秒前
Linco完成签到 ,获得积分10
23秒前
迷人灵发布了新的文献求助10
25秒前
郑诗琴关注了科研通微信公众号
26秒前
假面绅士发布了新的文献求助10
27秒前
spcwlh完成签到 ,获得积分10
29秒前
唔西迪西完成签到 ,获得积分10
30秒前
32秒前
33秒前
33秒前
宓飞烟完成签到,获得积分10
34秒前
TU完成签到,获得积分10
34秒前
35秒前
友好惜儿完成签到 ,获得积分10
35秒前
35秒前
hannibal发布了新的文献求助10
36秒前
郑诗琴发布了新的文献求助10
36秒前
风趣夜云完成签到,获得积分10
38秒前
迷人灵完成签到,获得积分10
38秒前
呜呼啦呼完成签到 ,获得积分10
39秒前
科研通AI5应助ccc采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322050
关于积分的说明 10208614
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878