Estimating of chlorophyll fluorescence parameter Fv/Fm for plant stress detection at peatlands under Ramsar Convention with Sentinel-2 satellite imagery

环境科学 湿地 遥感 植被(病理学) 叶绿素荧光 沼泽 卫星 卫星图像 叶绿素 生态学 地理 生物 植物 医学 病理 航空航天工程 工程类
作者
Maciej Bartold,Marcin Kluczek
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:81: 102603-102603 被引量:10
标识
DOI:10.1016/j.ecoinf.2024.102603
摘要

Monitoring vegetation is essential in Earth Observation (EO) due to its link with the global carbon cycle, playing a crucial role in ecosystem management. The fluorescence of chlorophyll (ChF) is a reliable indicator of plants' photosynthetic activity and growth, especially when they are experiencing unfavourable conditions, particularly in terrestrial wetlands. These wetlands are integral components of the landscape, contributing significantly to climate mitigation, adaptation, biodiversity, and the well-being of both the environment and humanity. We conducted a research study using the XGBoost machine learning algorithm to map the chlorophyll fluorescence parameter Fv/Fm in the Biebrza River Valley, which is known for its marshes, peatlands, and diverse flora and fauna. Our study highlights the benefits of using ensemble classifiers derived from EO Sentinel-2 satellite imagery for accurately mapping Fv/Fm across terrestrial landscapes under the Ramsar Convention at Narew River Valley (Poland) and Čepkeliai Marsh (Lithuania). The XGBoost algorithm provides an accurate estimate of ChF with a robust determination coefficient of 0.747 and minimal bias at 0.013, as validated using in situ data. The precision of Fv/Fm chlorophyll fluorescence parameter estimation from remote sensing sensors depends on the growth stage, emphasizing the importance of identifying the optimal overpass time for S-2 observations. Our study found that biophysical factors, as denoted by spectral indices related to greenness and leaf pigments, were highly impactful variables among the top classifiers. However, incorporating soil, vegetation and meteorological indicators from remote sensing data could further increase the accuracy of chlorophyll fluorescence mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pan完成签到 ,获得积分10
8秒前
10秒前
petrichor完成签到 ,获得积分10
11秒前
nice1025完成签到,获得积分10
12秒前
乐优发布了新的文献求助10
13秒前
16秒前
18秒前
少年完成签到,获得积分10
19秒前
大模型应助扒开皮皮采纳,获得10
19秒前
orixero应助66采纳,获得10
20秒前
科研通AI5应助内向绿竹采纳,获得10
21秒前
carl发布了新的文献求助10
22秒前
猪猪hero发布了新的文献求助10
24秒前
胡图图完成签到 ,获得积分10
25秒前
华仔应助Cherry采纳,获得10
25秒前
归尘应助科研通管家采纳,获得10
26秒前
共享精神应助科研通管家采纳,获得10
26秒前
26秒前
归尘应助科研通管家采纳,获得10
26秒前
归尘应助科研通管家采纳,获得10
26秒前
归尘应助科研通管家采纳,获得10
26秒前
归尘应助科研通管家采纳,获得10
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
归尘应助科研通管家采纳,获得10
26秒前
乐乐应助wss123456采纳,获得10
26秒前
bc应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
脑洞疼应助萨芬撒采纳,获得10
26秒前
Hello应助科研通管家采纳,获得30
26秒前
26秒前
bc应助科研通管家采纳,获得20
26秒前
bc应助科研通管家采纳,获得30
26秒前
所所应助carl采纳,获得10
30秒前
31秒前
扒开皮皮发布了新的文献求助10
32秒前
34秒前
feb完成签到,获得积分10
38秒前
66发布了新的文献求助10
38秒前
萨芬撒发布了新的文献求助10
39秒前
葶苈子完成签到 ,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217445
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668060
邀请新用户注册赠送积分活动 798494
科研通“疑难数据库(出版商)”最低求助积分说明 758385