Chemometrics-driven prediction and prioritization of diverse pesticides on chickens for addressing hazardous effects on public health

优先次序 杀虫剂 遗传毒性 数量结构-活动关系 毒性 支持向量机 毒理 生化工程 化学 计算机科学 工程类 管理科学 生物 生态学 机器学习 有机化学
作者
Shubha Das,Abhisek Samal,Probir Kumar Ojha
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:471: 134326-134326 被引量:12
标识
DOI:10.1016/j.jhazmat.2024.134326
摘要

The extensive use of various pesticides in the agriculture field badly affects both chickens and humans, primarily through residues in food products and environmental exposure. This study offers the first quantitative structure-toxicity relationship (QSTR) and quantitative read-across-structure toxicity relationship (q-RASTR) models encompassing the LOEL and NOEL endpoints for acute toxicity in chicken, a widely consumed protein. The study's significance lies in the direct link between chemical toxicity in chicken, human intake, and environmental damage. Both the QSTR and the similarity-based read-across algorithms are applied concurrently to improve the predictability of the models. The q-RASTR model was generated by combining read-across derived similarity and error-based parameters, alongside structural and physicochemical descriptors. Machine Learning approaches (SVM and RR) were also employed with the optimization of relevant hyperparameters based on the cross-validation approach, and the final test set prediction results were compared. The PLS q-RASTR models for NOEL and LOEL endpoints showed good statistical performance, as traced from the external validation metrics Q2F1: 0.762-0.844; Q2F2: 0.759-0.831 and MAEtest: 0.195-0.214. The developed models were further used to screen the Pesticide Properties DataBase (PPDB) for potential toxicants in chickens. Thus, established models can address eco-toxicological data gaps and development of novel and safe eco-friendly pesticides. The study's importance lies in the direct link between chemical toxicity in chicken, human intake, and environmental damage. Identifying and evaluating compound toxicity is crucial in managing adverse effects, including carcinogenicity, genotoxicity, immunotoxicology, reproductive and developmental toxicity, and safeguarding of avian species as well as public health. To overcome limitations like animal testing, time, cost, and limited experimental data, the developed PLS q-RASTR model can serve as a valuable tool for predicting toxicity effectively. The predictive model, along with the key structural insights gained in the present study, can contribute to developing environmentally friendly and safer chemicals, filling data gaps, and promoting the responsible use of ecotoxic substances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智咖啡豆完成签到 ,获得积分10
7秒前
XU博士完成签到,获得积分10
12秒前
甜甜甜完成签到 ,获得积分10
17秒前
18秒前
imica完成签到 ,获得积分10
18秒前
源来是洲董完成签到,获得积分10
21秒前
ZW完成签到 ,获得积分10
24秒前
sysi完成签到 ,获得积分10
25秒前
元宝完成签到 ,获得积分10
28秒前
忒寒碜完成签到,获得积分10
31秒前
Alan完成签到 ,获得积分10
33秒前
fuxixixi发布了新的文献求助10
33秒前
活力的小猫咪完成签到 ,获得积分10
34秒前
nusiew完成签到,获得积分10
35秒前
协和_子鱼完成签到,获得积分0
38秒前
firesquall完成签到,获得积分10
39秒前
白云完成签到 ,获得积分10
40秒前
mads完成签到 ,获得积分10
52秒前
53秒前
alan完成签到 ,获得积分10
59秒前
nano完成签到 ,获得积分10
1分钟前
海绵宝宝完成签到 ,获得积分10
1分钟前
呆鹅喵喵完成签到,获得积分10
1分钟前
微甜完成签到 ,获得积分10
1分钟前
秀丽的芷珍完成签到 ,获得积分10
1分钟前
CDQ完成签到,获得积分10
1分钟前
俏皮诺言完成签到 ,获得积分10
1分钟前
llu完成签到 ,获得积分10
1分钟前
孤独的问柳完成签到,获得积分10
1分钟前
小佳完成签到 ,获得积分10
1分钟前
超级李包包完成签到,获得积分10
1分钟前
djdh完成签到 ,获得积分10
1分钟前
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
Young应助flyingpig采纳,获得10
1分钟前
落红雨完成签到 ,获得积分10
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
DaDA完成签到 ,获得积分10
1分钟前
科研通AI2S应助武雨寒采纳,获得10
1分钟前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4131281
求助须知:如何正确求助?哪些是违规求助? 3668025
关于积分的说明 11601008
捐赠科研通 3365647
什么是DOI,文献DOI怎么找? 1849162
邀请新用户注册赠送积分活动 912898
科研通“疑难数据库(出版商)”最低求助积分说明 828355