AI-driven Selection of Candidates for Supplemental Breast Cancer Screening

医学 乳腺摄影术 乳腺癌 随机对照试验 家庭医学 梅德林 癌症 医学物理学 内科学 政治学 法学
作者
Myoung Kyoung Kim,Jung Min Chang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1)
标识
DOI:10.1148/radiol.240447
摘要

HomeRadiologyVol. 311, No. 1 PreviousNext Reviews and CommentaryEditorialAI-driven Selection of Candidates for Supplemental Breast Cancer ScreeningMyoung Kyoung Kim, Jung Min Chang Myoung Kyoung Kim, Jung Min Chang Author AffiliationsFrom the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (M.K.K.); Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.M.C.); and Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.M.C.).Address correspondence to J.M.C. (email: [email protected]).Myoung Kyoung KimJung Min Chang Published Online:Apr 9 2024https://doi.org/10.1148/radiol.240447See also the article by Liu et al in this issue.MoreSectionsFull textPDF ToolsAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookXLinked In References1. Berg WA, Zhang Z, Lehrer D, et al; ACRIN 6666 Investigators. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA 2012;307(13):1394–1404. Crossref, Medline, Google Scholar2. Ohuchi N, Suzuki A, Sobue T, et al; J-START investigator groups. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet 2016;387(10016):341–348. Crossref, Medline, Google Scholar3. Bakker MF, de Lange SV, Pijnappel RM, et al; DENSE Trial Study Group. Supplemental MRI screening for women with extremely dense breast tissue. N Engl J Med 2019;381(22):2091–2102. Crossref, Medline, Google Scholar4. Monticciolo DL, Newell MS, Moy L, Lee CS, Destounis SV. Breast cancer screening for women at higher-than-average risk: updated recommendations from the ACR. J Am Coll Radiol 2023;20(9):902–914. Crossref, Medline, Google Scholar5. Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 2019;292(1):60–66. Link, Google Scholar6. Yala A, Mikhael PG, Strand F, et al. Multi-institutional validation of a mammography-based breast cancer risk model. J Clin Oncol 2022;40(16):1732–1740. Crossref, Medline, Google Scholar7. Damiani C, Kalliatakis G, Sreenivas M, et al. Evaluation of an AI model to assess future breast cancer risk. Radiology 2023;307(5):e222679. Link, Google Scholar8. Arasu VA, Habel LA, Achacoso NS, et al. Comparison of mammography AI algorithms with a clinical risk model for 5-year breast cancer risk prediction: an observational study. Radiology 2023;307(5):e222733. Link, Google Scholar9. Lauritzen AD, von Euler-Chelpin MC, Lynge E, et al. Assessing breast cancer risk by combining AI for lesion detection and mammographic texture. Radiology 2023;308(2):e230227. Link, Google Scholar10. Liu Y, Sorkhei M, Dembrower K, Azizpour H, Strand F, Smith K. Use of an AI score combining cancer signs, masking, and risk to select patients for supplemental breast cancer screening. Radiology 2024;311(1):e232535. Google ScholarArticle HistoryReceived: Feb 13 2024Revision requested: Mar 8 2024Revision received: Mar 11 2024Accepted: Mar 12 2024Published online: Apr 09 2024 FiguresReferencesRelatedDetailsAccompanying This ArticleUse of an AI Score Combining Cancer Signs, Masking, and Risk to Select Patients for Supplemental Breast Cancer ScreeningApr 9 2024RadiologyRecommended Articles RSNA Education Exhibits RSNA Case Collection Vol. 311, No. 1 Metrics Altmetric Score PDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzzx发布了新的文献求助10
18秒前
32秒前
英俊的铭应助科研通管家采纳,获得10
36秒前
jkaaa完成签到,获得积分10
37秒前
qiu发布了新的文献求助10
37秒前
37秒前
精明寒松完成签到 ,获得积分10
38秒前
Linly发布了新的文献求助10
42秒前
Linly完成签到,获得积分10
48秒前
Hello应助张世瑞采纳,获得10
49秒前
Gary完成签到 ,获得积分10
49秒前
49秒前
小果完成签到 ,获得积分10
50秒前
时鹏飞完成签到 ,获得积分10
51秒前
yujx发布了新的文献求助10
55秒前
55秒前
张世瑞发布了新的文献求助10
1分钟前
在水一方应助yujx采纳,获得10
1分钟前
清新的火龙果完成签到,获得积分20
1分钟前
奥丁不言语完成签到 ,获得积分10
1分钟前
好运常在完成签到 ,获得积分10
1分钟前
zzzzzx发布了新的文献求助10
1分钟前
科研通AI5应助张世瑞采纳,获得10
1分钟前
张北海完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Itazu完成签到,获得积分10
1分钟前
张世瑞发布了新的文献求助10
1分钟前
MISA完成签到 ,获得积分10
1分钟前
张世瑞完成签到,获得积分10
1分钟前
zzzzzx发布了新的文献求助10
1分钟前
沉默的友安完成签到 ,获得积分10
2分钟前
微笑的巧蕊完成签到 ,获得积分10
2分钟前
乐乐应助大气的小蜜蜂采纳,获得10
2分钟前
海英完成签到,获得积分10
2分钟前
共享精神应助zzzzzx采纳,获得10
2分钟前
2分钟前
ywzwszl完成签到,获得积分0
2分钟前
yujx发布了新的文献求助10
2分钟前
zhangpeipei完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4800517
求助须知:如何正确求助?哪些是违规求助? 4119250
关于积分的说明 12743320
捐赠科研通 3850699
什么是DOI,文献DOI怎么找? 2121199
邀请新用户注册赠送积分活动 1143456
关于科研通互助平台的介绍 1033082