亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI‐based clinical‐radiomics nomogram model for predicting microvascular invasion in hepatocellular carcinoma

列线图 无线电技术 肝细胞癌 医学 放射科 肿瘤科 内科学 病理
作者
Qinghua Wang,Yongjie Zhou,Hongan Yang,Jingrun Zhang,Xianjun Zeng,Yongming Tan
出处
期刊:Medical Physics [Wiley]
卷期号:51 (7): 4673-4686 被引量:3
标识
DOI:10.1002/mp.17087
摘要

Abstract Background Preoperative microvascular invasion (MVI) of liver cancer is an effective method to reduce the recurrence rate of liver cancer. Hepatectomy with extended resection and additional adjuvant or targeted therapy can significantly improve the survival rate of MVI+ patients by eradicating micrometastasis. Preoperative prediction of MVI status is of great clinical significance for surgical decision‐making and the selection of other adjuvant therapy strategies to improve the prognosis of patients. Purpose Established a radiomics machine learning model based on multimodal MRI and clinical data, and analyzed the preoperative prediction value of this model for microvascular invasion (MVI) of hepatocellular carcinoma (HCC). Method The preoperative liver MRI data and clinical information of 130 HCC patients who were pathologically confirmed to be pathologically confirmed were retrospectively studied. These patients were divided into MVI‐positive group (MVI+) and MVI‐negative group (MVI‐) based on postoperative pathology. After a series of dimensionality reduction analysis, six radiomic features were finally selected. Then, linear support vector machine (linear SVM), support vector machine with rbf kernel function (rbf‐SVM), logistic regression (LR), Random forest (RF) and XGBoost (XGB) algorithms were used to establish the MVI prediction model for preoperative HCC patients. Then, rbf‐SVM with the best predictive performance was selected to construct the radiomics score (R‐score). Finally, we combined R‐score and clinical‐pathology‐image independent predictors to establish a combined nomogram model and corresponding individual models. The predictive performance of individual models and combined nomogram was evaluated and compared by receiver operating characteristic curve (ROC). Result Alpha‐fetoprotein concentration, peritumor enhancement, maximum tumor diameter, smooth tumor margins, tumor growth pattern, presence of intratumor hemorrhage, and RVI were independent predictors of MVI. Compared with individual models, the final combined nomogram model (AUC: 0.968, 95% CI: 0.920–1.000) constructed by radiometry score (R‐score) combined with clinicopathological parameters and apparent imaging features showed the optimal predictive performance. Conclusion This multi‐parameter combined nomogram model had a good performance in predicting MVI of HCC, and had certain auxiliary value for the formulation of surgical plan and evaluation of prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
17秒前
18秒前
国色不染尘完成签到,获得积分10
19秒前
可爱的函函应助fheu采纳,获得10
23秒前
kytm完成签到,获得积分10
24秒前
26秒前
29秒前
30秒前
科研难发布了新的文献求助10
31秒前
40秒前
小酥饼完成签到,获得积分10
43秒前
fheu发布了新的文献求助10
44秒前
48秒前
标致飞雪完成签到 ,获得积分10
1分钟前
1分钟前
杨艳完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
SuzhenZH完成签到,获得积分10
1分钟前
朱朱子完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
momo发布了新的文献求助10
1分钟前
果冻橙完成签到,获得积分10
1分钟前
科研通AI5应助跳跃野狼采纳,获得10
1分钟前
怕黑初阳发布了新的文献求助10
1分钟前
在水一方应助momo采纳,获得10
1分钟前
1分钟前
cnbhhhhh发布了新的文献求助10
1分钟前
momo完成签到,获得积分10
1分钟前
1分钟前
怕黑初阳完成签到,获得积分10
1分钟前
1分钟前
一卷钢丝球完成签到,获得积分10
1分钟前
恒温失效发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681222
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702