Random-Walker-Based Collaborative Learning for Hyperspectral Image Classification

高光谱成像 计算机科学 模式识别(心理学) 人工智能 分类器(UML) 上下文图像分类 正确性 训练集 数据集 图像分割 分割 图像(数学) 算法
作者
Bin Sun,Xudong Kang,Shutao Li,Jón Atli Benediktsson
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (1): 212-222 被引量:59
标识
DOI:10.1109/tgrs.2016.2604290
摘要

Active learning (AL) and semisupervised learning (SSL) are both promising solutions to hyperspectral image classification. Given a few initial labeled samples, this work combines AL and SSL in a novel manner, aiming to obtain more manually labeled and pseudolabeled samples and use them together with the initial labeled samples to improve the classification performance. First, based on a comparison of the segmentation and spectral-spatial classification results obtained by random walker (RW) and extended RW (ERW) algorithms, the unlabeled samples are separated into two different sets, i.e., low- and high-confidence unlabeled data sets. For the high-confidence unlabeled data, pseudolabeling is performed, which can ensure the correctness and informativeness of the pseudolabeled samples. For the low-confidence unlabeled data, AL is used to select samples. In this way, the samples which are more effective for improvement of classification performance can be labeled in only a few iterations. Finally, with the learned training set and the original hyperspectral image as inputs, the ERW classifier is used to obtain the final classification result. Experiments performed on three real hyperspectral data sets show that the proposed method can achieve competitive classification accuracy even with a very limited number of manually labeled samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
个性书翠应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
jjyy应助科研通管家采纳,获得10
1秒前
wer发布了新的文献求助10
1秒前
大模型应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
个性书翠应助科研通管家采纳,获得10
2秒前
核桃应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
个性书翠应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
斯文飞雪应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
个性书翠应助科研通管家采纳,获得10
4秒前
小杨同学发布了新的文献求助10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
Julie完成签到,获得积分10
8秒前
Noora发布了新的文献求助10
8秒前
小姚在忙发布了新的文献求助10
8秒前
8秒前
8秒前
Johnpick发布了新的文献求助10
8秒前
李健应助focco采纳,获得10
9秒前
孙燕应助许nana采纳,获得10
10秒前
10秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842448
求助须知:如何正确求助?哪些是违规求助? 3384489
关于积分的说明 10535435
捐赠科研通 3105054
什么是DOI,文献DOI怎么找? 1709939
邀请新用户注册赠送积分活动 823445
科研通“疑难数据库(出版商)”最低求助积分说明 774068