德隆
蛋白质生物合成
细胞生物学
融合蛋白
蛋白质降解
蛋白酶
化学
药物发现
小分子
计算生物学
生物
生物化学
基因
酶
泛素
重组DNA
泛素连接酶
作者
H. Kay Chung,C. Jacobs,Yunwen Huo,Jin Yang,Stefanie A. Krumm,Richard K. Plemper,Roger Y. Tsien,Michael Z. Lin
标识
DOI:10.1038/nchembio.1869
摘要
An effective method for direct chemical control over the production of specific proteins would be widely useful. We describe small molecule-assisted shutoff (SMASh), a technique in which proteins are fused to a degron that removes itself in the absence of drug, resulting in the production of an untagged protein. Clinically tested HCV protease inhibitors can then block degron removal, inducing rapid degradation of subsequently synthesized copies of the protein. SMASh allows reversible and dose-dependent shutoff of various proteins in multiple mammalian cell types and in yeast. We also used SMASh to confer drug responsiveness onto an RNA virus for which no licensed inhibitors exist. As SMASh does not require the permanent fusion of a large domain, it should be useful when control over protein production with minimal structural modification is desired. Furthermore, as SMASh involves only a single genetic modification and does not rely on modulating protein-protein interactions, it should be easy to generalize to multiple biological contexts.
科研通智能强力驱动
Strongly Powered by AbleSci AI