材料科学
光催化
异质结
催化作用
吸收(声学)
氧化还原
光化学
螯合作用
选择性
化学工程
纳米技术
吸收光谱法
可见光谱
还原(数学)
吉布斯自由能
能量转换效率
太阳能
碳纤维
选择性催化还原
电子结构
工作(物理)
电催化剂
选择性还原
太阳能燃料
密度泛函理论
多相催化
能量转换
作者
Wenke Gui,Hailong Cheng,Hui Wang,Quan Wang,Ningyan Cheng,Liang Wang,Liang Wang,Li Wang,Li Wang,Jianping Yang
标识
DOI:10.1002/adma.202523341
摘要
ABSTRACT The photocatalytic conversion of CO 2 into hydrocarbons using sustainable solar energy offers a promising strategy to address the global energy crisis and achieve carbon neutrality. However, conventional p‐block photocatalysts are often limited by inefficient electron transfer, which restricts the reaction to a two‐electron reduction pathway, primarily yielding CO and impeding the formation of high‐value hydrocarbons like CH 4 . Herein, we construct a novel BiOCl–BiO(HCOO) heterostructure (denoted as BiOCH), which features interfacial chelating interactions between the [Bi 2 O 2 ] 2 + and [HCOO] − layers within the BiO(HCOO) component, for efficient photocatalytic CO 2 reduction to CH 4 . This unique heterostructure broadens the light absorption spectrum and facilitates the separation of photoinduced charges. More importantly, the interfacial Bi─O chelation in BiO(HCOO) modulates the local electronic microenvironment of Bi sites. Mechanistic studies reveal that this modulation enhances the coupling between the C‐2p orbital of the * CHO intermediate and the Bi‐p orbital, thereby lowering the Gibbs free energy barrier for the critical * CO‐to‐ * CHO step and promoting CH 4 generation. Consequently, the optimized BiOCH catalyst achieves a remarkable CH 4 production rate of 42.95 µmol·g − 1 ·h − 1 with a high electron selectivity of 95.38%. This work provides a novel design strategy of organic–inorganic hybrid layered structures for steering photocatalytic CO 2 reduction toward value‐added hydrocarbons.
科研通智能强力驱动
Strongly Powered by AbleSci AI