Sub-Graph Contrast for Scalable Self-Supervised Graph Representation Learning

计算机科学 可扩展性 图形 理论计算机科学 特征学习 图嵌入 嵌入 半监督学习 人工智能 计算 外部数据表示 机器学习 算法 数据库
作者
Yizhu Jiao,Yun Xiong,Jiawei Zhang,Yao Zhang,Tianqi Zhang,Yangyong Zhu
标识
DOI:10.1109/icdm50108.2020.00031
摘要

Graph representation learning has attracted lots of attention recently. Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs. Thus, it remains a great challenge to capture rich information in large-scale graph data. Besides, these methods mainly focus on supervised learning and highly depend on node label information, which is expensive to obtain in the real world. As to unsupervised network embedding approaches, they overemphasize node proximity instead, whose learned representations can hardly be used in downstream application tasks directly. In recent years, emerging self-supervised learning provides a potential solution to address the aforementioned problems. However, existing self-supervised works also operate on the complete graph data and are biased to fit either global or very local (1-hop neighborhood) graph structures in defining the mutual information based loss terms. In this paper, a novel self-supervised representation learning method via Sub-graph Contrast, namely Subg-Con, is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information. Instead of learning on the complete input graph data, with a novel data augmentation strategy, Subg-Con learns node representations through a contrastive loss defined based on subgraphs sampled from the original graph instead. Compared with existing graph representation learning approaches, Subg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization. Extensive experiments verify both the effectiveness and the efficiency of our work compared with both classic and state-of-the-art graph representation learning approaches on multiple realworld large-scale benchmark datasets from different domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1762120完成签到,获得积分10
2秒前
搜集达人应助逸晨采纳,获得10
2秒前
4秒前
核桃发布了新的文献求助10
5秒前
辛坦夫发布了新的文献求助10
5秒前
Clivia发布了新的文献求助10
6秒前
9秒前
9秒前
李昕123发布了新的文献求助10
12秒前
Clivia完成签到,获得积分20
13秒前
15秒前
科研通AI5应助gemini0615采纳,获得30
16秒前
16秒前
17秒前
珂尔维特发布了新的文献求助10
21秒前
wanci应助百甲采纳,获得10
21秒前
rex发布了新的文献求助10
21秒前
cc发布了新的文献求助10
23秒前
FashionBoy应助林林呀采纳,获得10
23秒前
Hello应助勤恳的宛菡采纳,获得10
23秒前
24秒前
FashionBoy应助Aurora采纳,获得10
27秒前
27秒前
可爱番茄完成签到 ,获得积分10
27秒前
32秒前
阔达碧空发布了新的文献求助10
33秒前
老实蝴蝶发布了新的文献求助10
34秒前
外向的妍完成签到,获得积分10
36秒前
36秒前
射天狼发布了新的文献求助10
37秒前
CodeCraft应助大气的山彤采纳,获得30
38秒前
fuyuan发布了新的文献求助10
39秒前
sikaixue发布了新的文献求助10
39秒前
40秒前
都是发布了新的文献求助10
40秒前
科研通AI5应助阔达碧空采纳,获得10
43秒前
lijun完成签到,获得积分10
43秒前
善学以致用应助21采纳,获得10
43秒前
那那发布了新的文献求助10
45秒前
GuangliangGao发布了新的文献求助10
46秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784064
求助须知:如何正确求助?哪些是违规求助? 3329170
关于积分的说明 10240457
捐赠科研通 3044703
什么是DOI,文献DOI怎么找? 1671219
邀请新用户注册赠送积分活动 800189
科研通“疑难数据库(出版商)”最低求助积分说明 759213