A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information

计算机科学 变压器 人工智能 卷积神经网络 语言模型 编码器 自然语言处理 嵌入 特征学习 背景(考古学) 深度学习 模式识别(心理学) 生物 操作系统 物理 古生物学 量子力学 电压
作者
Nguyen Quoc Khanh Le,Quang-Thai Ho,Trinh Trung Duong Nguyen,Yu-Yen Ou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (5) 被引量:71
标识
DOI:10.1093/bib/bbab005
摘要

Recently, language representation models have drawn a lot of attention in the natural language processing field due to their remarkable results. Among them, bidirectional encoder representations from transformers (BERT) has proven to be a simple, yet powerful language model that achieved novel state-of-the-art performance. BERT adopted the concept of contextualized word embedding to capture the semantics and context of the words in which they appeared. In this study, we present a novel technique by incorporating BERT-based multilingual model in bioinformatics to represent the information of DNA sequences. We treated DNA sequences as natural sentences and then used BERT models to transform them into fixed-length numerical matrices. As a case study, we applied our method to DNA enhancer prediction, which is a well-known and challenging problem in this field. We then observed that our BERT-based features improved more than 5-10% in terms of sensitivity, specificity, accuracy and Matthews correlation coefficient compared to the current state-of-the-art features in bioinformatics. Moreover, advanced experiments show that deep learning (as represented by 2D convolutional neural networks; CNN) holds potential in learning BERT features better than other traditional machine learning techniques. In conclusion, we suggest that BERT and 2D CNNs could open a new avenue in biological modeling using sequence information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李悟尔发布了新的文献求助30
1秒前
时之砂完成签到,获得积分10
1秒前
3秒前
grgr发布了新的文献求助10
3秒前
3秒前
发财小鱼完成签到 ,获得积分10
3秒前
吴不知所以然完成签到,获得积分10
5秒前
在水一方应助李悟尔采纳,获得30
5秒前
5秒前
科研通AI5应助荣桑采纳,获得10
5秒前
gsj完成签到 ,获得积分10
6秒前
7秒前
背后书双发布了新的文献求助10
7秒前
8秒前
祝虔纹完成签到,获得积分10
10秒前
龙喵喵发布了新的文献求助10
10秒前
16秒前
19秒前
20秒前
21秒前
七七完成签到,获得积分10
21秒前
陶1122发布了新的文献求助10
21秒前
黄大仙完成签到,获得积分10
23秒前
23秒前
moyu发布了新的文献求助10
24秒前
grgr完成签到,获得积分10
25秒前
26秒前
LYQ完成签到 ,获得积分10
26秒前
小蘑菇应助失眠班采纳,获得10
27秒前
Joker发布了新的文献求助30
27秒前
陶1122完成签到,获得积分10
28秒前
xff完成签到,获得积分20
29秒前
卷卷加贝完成签到,获得积分10
29秒前
Gauss完成签到,获得积分0
31秒前
XM发布了新的文献求助10
32秒前
嘿嘿完成签到 ,获得积分10
32秒前
甜甜的雁凡完成签到,获得积分10
32秒前
土豆子汁完成签到,获得积分10
34秒前
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834961
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498625
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705347
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772123