Graph Convolutional Networks for Hyperspectral Image Classification

计算机科学 高光谱成像 瓶颈 卷积神经网络 人工智能 邻接矩阵 模式识别(心理学) 图形 串联(数学) 数据挖掘 数学 理论计算机科学 组合数学 嵌入式系统
作者
Danfeng Hong,Lianru Gao,Jing Yao,Bing Zhang,Antonio Plaza,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (7): 5966-5978 被引量:241
标识
DOI:10.1109/tgrs.2020.3015157
摘要

To read the final version please go to IEEE TGRS on IEEE Xplore. Convolutional neural networks (CNNs) have been attracting increasing attention in hyperspectral (HS) image classification, owing to their ability to capture spatial-spectral feature representations. Nevertheless, their ability in modeling relations between samples remains limited. Beyond the limitations of grid sampling, graph convolutional networks (GCNs) have been recently proposed and successfully applied in irregular (or non-grid) data representation and analysis. In this paper, we thoroughly investigate CNNs and GCNs (qualitatively and quantitatively) in terms of HS image classification. Due to the construction of the adjacency matrix on all the data, traditional GCNs usually suffer from a huge computational cost, particularly in large-scale remote sensing (RS) problems. To this end, we develop a new mini-batch GCN (called miniGCN hereinafter) which allows to train large-scale GCNs in a mini-batch fashion. More significantly, our miniGCN is capable of inferring out-of-sample data without re-training networks and improving classification performance. Furthermore, as CNNs and GCNs can extract different types of HS features, an intuitive solution to break the performance bottleneck of a single model is to fuse them. Since miniGCNs can perform batch-wise network training (enabling the combination of CNNs and GCNs) we explore three fusion strategies: additive fusion, element-wise multiplicative fusion, and concatenation fusion to measure the obtained performance gain. Extensive experiments, conducted on three HS datasets, demonstrate the advantages of miniGCNs over GCNs and the superiority of the tested fusion strategies with regards to the single CNN or GCN models. The codes of this work will be available at https://github.com/danfenghong/IEEE_TGRS_GCN for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助科研小黑采纳,获得10
1秒前
3秒前
shilin0822完成签到,获得积分10
5秒前
wshuai发布了新的文献求助10
5秒前
小赵发布了新的文献求助10
7秒前
chen发布了新的文献求助10
9秒前
11秒前
12秒前
蓬蓬发布了新的文献求助10
12秒前
嘿嘿应助ptang采纳,获得10
16秒前
万万完成签到,获得积分10
17秒前
xixili发布了新的文献求助10
17秒前
17秒前
小蘑菇应助机灵亦旋采纳,获得10
19秒前
人间完成签到 ,获得积分10
20秒前
老陌完成签到,获得积分20
21秒前
23秒前
乔诶次完成签到 ,获得积分10
23秒前
北辰李完成签到,获得积分10
23秒前
clock完成签到 ,获得积分10
24秒前
Auston_zhong发布了新的文献求助10
24秒前
24秒前
25秒前
科研通AI2S应助麻花精采纳,获得10
25秒前
wanci应助麻花精采纳,获得10
25秒前
WangZK应助科研通管家采纳,获得10
27秒前
27秒前
所所应助科研通管家采纳,获得10
27秒前
1111应助科研通管家采纳,获得20
27秒前
研友_VZG7GZ应助科研通管家采纳,获得10
27秒前
bkagyin应助科研通管家采纳,获得10
27秒前
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
27秒前
Hello应助科研通管家采纳,获得10
27秒前
乐乐应助科研通管家采纳,获得10
27秒前
望舒完成签到 ,获得积分10
30秒前
李爱国应助ll采纳,获得10
31秒前
大胆易巧完成签到 ,获得积分10
32秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Ultra-Wide Bandgap Semiconductor Materials 600
Psychology Applied to Teaching 14th Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4090140
求助须知:如何正确求助?哪些是违规求助? 3628781
关于积分的说明 11504875
捐赠科研通 3341028
什么是DOI,文献DOI怎么找? 1836546
邀请新用户注册赠送积分活动 904521
科研通“疑难数据库(出版商)”最低求助积分说明 822367