Graph Convolutional Networks for Hyperspectral Image Classification

计算机科学 高光谱成像 瓶颈 卷积神经网络 人工智能 邻接矩阵 模式识别(心理学) 图形 串联(数学) 数据挖掘 数学 理论计算机科学 组合数学 嵌入式系统
作者
Danfeng Hong,Lianru Gao,Jing Yao,Bing Zhang,Antonio Plaza,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (7): 5966-5978 被引量:1586
标识
DOI:10.1109/tgrs.2020.3015157
摘要

To read the final version please go to IEEE TGRS on IEEE Xplore. Convolutional neural networks (CNNs) have been attracting increasing attention in hyperspectral (HS) image classification, owing to their ability to capture spatial-spectral feature representations. Nevertheless, their ability in modeling relations between samples remains limited. Beyond the limitations of grid sampling, graph convolutional networks (GCNs) have been recently proposed and successfully applied in irregular (or non-grid) data representation and analysis. In this paper, we thoroughly investigate CNNs and GCNs (qualitatively and quantitatively) in terms of HS image classification. Due to the construction of the adjacency matrix on all the data, traditional GCNs usually suffer from a huge computational cost, particularly in large-scale remote sensing (RS) problems. To this end, we develop a new mini-batch GCN (called miniGCN hereinafter) which allows to train large-scale GCNs in a mini-batch fashion. More significantly, our miniGCN is capable of inferring out-of-sample data without re-training networks and improving classification performance. Furthermore, as CNNs and GCNs can extract different types of HS features, an intuitive solution to break the performance bottleneck of a single model is to fuse them. Since miniGCNs can perform batch-wise network training (enabling the combination of CNNs and GCNs) we explore three fusion strategies: additive fusion, element-wise multiplicative fusion, and concatenation fusion to measure the obtained performance gain. Extensive experiments, conducted on three HS datasets, demonstrate the advantages of miniGCNs over GCNs and the superiority of the tested fusion strategies with regards to the single CNN or GCN models. The codes of this work will be available at https://github.com/danfenghong/IEEE_TGRS_GCN for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
小二郎应助空白采纳,获得10
1秒前
花生发布了新的文献求助10
1秒前
欢呼平蓝完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
思源应助石会发采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
婷婷发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
Twonej应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Twonej应助科研通管家采纳,获得30
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
脑洞疼应助迷路的虔采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728727
求助须知:如何正确求助?哪些是违规求助? 5314558
关于积分的说明 15315180
捐赠科研通 4875870
什么是DOI,文献DOI怎么找? 2619052
邀请新用户注册赠送积分活动 1568676
关于科研通互助平台的介绍 1525214