Sparse dictionary design based on edited cepstrum and its application in rolling bearing fault diagnosis

倒谱 计算机科学 稳健性(进化) 特征提取 方位(导航) 模式识别(心理学) 情态动词 断层(地质) 人工智能 匹配追踪 脉冲响应 Mel倒谱 语音识别 算法 压缩传感 数学 数学分析 地质学 基因 生物化学 地震学 化学 高分子化学
作者
Fei Jiang,Kang Ding,Guolin He,Canyi Du
出处
期刊:Journal of Sound and Vibration [Elsevier BV]
卷期号:490: 115704-115704 被引量:23
标识
DOI:10.1016/j.jsv.2020.115704
摘要

• A novel dictionary design method is proposed for impact feature extraction. • Modal parameters identification errors are corrected by quantitative compensation. • A segmental matching pursuit algorithm with fast calculation speed is applied. • Simulations and experimental tests verify the effectiveness of proposed method. Rolling bearing with a localized defect usually generates periodically impact vibration responses, which carry important information for bearing fault diagnosis. Due to the inevitable noise disturbances, extracting accurate impact features of faulty bearing is still a hard task. In view of the superiority of sparse decomposition on feature extraction, a novel sparse dictionary design method is proposed based on edited cepstrum to improve the precision of feature extraction. The impulse response function is selected as sparse atom, which better reflects the structure and inherent modal characteristics of the faulty bearing. The modal parameters are directly identified from the deconvolved fault signal by edited cepstrum. Identification errors caused by the cepstrum windowing are corrected by quantitative compensation, which further improves the accuracy of dictionary design. A segmental matching pursuit algorithm is applied to speed sparse coefficients solving and fault features reconstruction. A series of simulation analyses verify the proposed method's effectiveness, anti-noise performance and robustness. Experimental tests on pure rolling bearing and gearbox bearing further verify the method's effectiveness under different working conditions. Additionally, comparisons with an improved spectral kurtosis method and an edited cepstrum methodshow the proposed method be more reliable in diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圣尊鳕幽完成签到,获得积分10
刚刚
刚刚
Ehgnix发布了新的文献求助10
刚刚
刚刚
Xiaoxiao应助xm采纳,获得10
1秒前
纵使千千晚星完成签到,获得积分10
1秒前
叫滚滚发布了新的文献求助10
1秒前
顾矜应助莫愁采纳,获得10
2秒前
怕孤单的寒天完成签到,获得积分10
2秒前
985博士完成签到,获得积分20
2秒前
研友_nPkl9L发布了新的文献求助10
3秒前
Vincent发布了新的文献求助10
3秒前
Faine完成签到 ,获得积分10
3秒前
pcr163应助叶子采纳,获得30
3秒前
漂亮飞凤发布了新的文献求助10
3秒前
5秒前
ranlan完成签到,获得积分10
5秒前
谦让小玉完成签到 ,获得积分10
5秒前
邓佳鑫Alan发布了新的文献求助10
5秒前
Spinnin完成签到,获得积分10
5秒前
lennon完成签到,获得积分10
5秒前
科研通AI5应助wenqing采纳,获得10
6秒前
6秒前
Luckqi6688完成签到,获得积分10
6秒前
揽月yue应助prophage采纳,获得10
6秒前
领导范儿应助漂亮飞凤采纳,获得10
7秒前
7秒前
斯文败类应助勾勾采纳,获得10
7秒前
Rlx完成签到,获得积分10
7秒前
SYLH应助绿色的泥巴采纳,获得10
7秒前
xy完成签到,获得积分10
8秒前
烯灯完成签到,获得积分10
8秒前
科研通AI5应助有魅力绿真采纳,获得10
8秒前
8秒前
Cherry完成签到,获得积分10
8秒前
JamesPei应助勤劳母鸡采纳,获得10
9秒前
10秒前
李爱国应助wongtinlun采纳,获得10
10秒前
跳跃的惮发布了新的文献求助10
12秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812073
求助须知:如何正确求助?哪些是违规求助? 3356517
关于积分的说明 10382273
捐赠科研通 3073630
什么是DOI,文献DOI怎么找? 1688345
邀请新用户注册赠送积分活动 812103
科研通“疑难数据库(出版商)”最低求助积分说明 766947