卫生间
指纹(计算)
计算机科学
生物识别
工作流程
软件
尿检
云计算
医学
嵌入式系统
人工智能
实时计算
数据挖掘
数据库
尿
操作系统
病理
内分泌学
作者
Seung Min Park,Daeyoun David Won,Brian J. Lee,Diego Escobedo,Andre Esteva,Amin Aalipour,T. Jessie Ge,Jung Ha Kim,Susie Suh,Elliot H. Choi,Alexander X. Lozano,Chengyang Yao,Sunil Bodapati,Friso B. Achterberg,Jeesu Kim,Hwan Park,Young‐Jae Choi,Woo Jin Kim,Jung Ho Yu,Alexander M. Bhatt
标识
DOI:10.1038/s41551-020-0534-9
摘要
Technologies for the longitudinal monitoring of a person's health are poorly integrated with clinical workflows, and have rarely produced actionable biometric data for healthcare providers. Here, we describe easily deployable hardware and software for the long-term analysis of a user's excreta through data collection and models of human health. The 'smart' toilet, which is self-contained and operates autonomously by leveraging pressure and motion sensors, analyses the user's urine using a standard-of-care colorimetric assay that traces red-green-blue values from images of urinalysis strips, calculates the flow rate and volume of urine using computer vision as a uroflowmeter, and classifies stool according to the Bristol stool form scale using deep learning, with performance that is comparable to the performance of trained medical personnel. Each user of the toilet is identified through their fingerprint and the distinctive features of their anoderm, and the data are securely stored and analysed in an encrypted cloud server. The toilet may find uses in the screening, diagnosis and longitudinal monitoring of specific patient populations.
科研通智能强力驱动
Strongly Powered by AbleSci AI