A machine-learning approach to predicting hypotensive events in ICU settings

时间戳 计算机科学 机器学习 人工智能 算法 医学 数据挖掘 实时计算
作者
Mina Chookhachizadeh Moghadam,Ehsan Masoumi Khalil Abad,Nader Bagherzadeh,Davinder Ramsingh,G.P. Li,Zeev N. Kain
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:118: 103626-103626 被引量:23
标识
DOI:10.1016/j.compbiomed.2020.103626
摘要

Predicting hypotension well in advance provides physicians with enough time to respond with proper therapeutic measures. However, the real-time prediction of hypotension with high positive predictive value (PPV) is a challenge. This is due to the dynamic changes in patients’ physiological status following drug administration, which limits the quantity of useful data available for the algorithm. To mimic real-time monitoring, we developed a machine-learning algorithm that uses most of the available data points from patients’ records to train and test the algorithm. The algorithm predicts hypotension up to 30 min in advance based on the data from only 5 min of patient physiological history. A novel evaluation method is also proposed to assess the performance of the algorithm as a function of time at every timestamp within 30 min of hypotension onset. This evaluation approach provides statistical tools to find the best possible prediction window. During about 181,000 min of monitoring of 400 patients, the algorithm demonstrated 94% accuracy, 85% sensitivity and 96% specificity in predicting hypotension within 30 min of the events. A high PPV of 81% was obtained, and the algorithm predicted 80% of hypotensive events 25 min prior to onset. It was shown that choosing a classification threshold that maximizes the F1 score during the training phase contributes to a high PPV and sensitivity. This study demonstrates the promising potential of machine-learning algorithms in the real-time prediction of hypotensive events in ICU settings based on short-term physiological history.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小完成签到,获得积分10
刚刚
yw完成签到,获得积分20
2秒前
斯文败类应助封小封采纳,获得10
2秒前
雷锋完成签到,获得积分10
2秒前
1l2kl完成签到,获得积分10
3秒前
旺旺旺完成签到,获得积分10
3秒前
林深见鹿完成签到,获得积分10
3秒前
1111完成签到,获得积分10
4秒前
皮听南完成签到,获得积分10
4秒前
yan123发布了新的文献求助10
4秒前
kk完成签到,获得积分10
5秒前
小郭呀发布了新的文献求助10
5秒前
温婉的访风完成签到,获得积分10
5秒前
海锅的小迷妹完成签到,获得积分10
5秒前
亚麻灰色完成签到,获得积分10
6秒前
大模型应助入暖采纳,获得10
6秒前
lian完成签到,获得积分10
6秒前
6秒前
八大山人完成签到,获得积分10
7秒前
羊羊羊完成签到,获得积分10
7秒前
叮叮叮完成签到,获得积分10
8秒前
8秒前
8秒前
小郭呀完成签到,获得积分10
10秒前
隐形荟完成签到 ,获得积分10
10秒前
10秒前
比巴伯完成签到,获得积分10
10秒前
王二哈发布了新的文献求助10
10秒前
nemo711完成签到,获得积分10
11秒前
yznfly应助老流氓采纳,获得30
12秒前
12秒前
沉默高跟鞋完成签到,获得积分10
12秒前
karyoter完成签到,获得积分10
12秒前
专一的善愁完成签到 ,获得积分10
13秒前
甜甜宛菡完成签到 ,获得积分10
13秒前
八大山人发布了新的文献求助10
13秒前
郭慧娜完成签到,获得积分10
14秒前
WEILAI完成签到,获得积分10
14秒前
年少有你完成签到,获得积分10
14秒前
hlt完成签到 ,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953707
求助须知:如何正确求助?哪些是违规求助? 3499536
关于积分的说明 11096135
捐赠科研通 3230090
什么是DOI,文献DOI怎么找? 1785865
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801479