A machine-learning approach to predicting hypotensive events in ICU settings

时间戳 计算机科学 机器学习 人工智能 算法 医学 数据挖掘 计算机安全
作者
Mina Chookhachizadeh Moghadam,Ehsan Masoumi Khalil Abad,Nader Bagherzadeh,Davinder Ramsingh,G.P. Li,Zeev N. Kain
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:118: 103626-103626 被引量:30
标识
DOI:10.1016/j.compbiomed.2020.103626
摘要

Predicting hypotension well in advance provides physicians with enough time to respond with proper therapeutic measures. However, the real-time prediction of hypotension with high positive predictive value (PPV) is a challenge. This is due to the dynamic changes in patients’ physiological status following drug administration, which limits the quantity of useful data available for the algorithm. To mimic real-time monitoring, we developed a machine-learning algorithm that uses most of the available data points from patients’ records to train and test the algorithm. The algorithm predicts hypotension up to 30 min in advance based on the data from only 5 min of patient physiological history. A novel evaluation method is also proposed to assess the performance of the algorithm as a function of time at every timestamp within 30 min of hypotension onset. This evaluation approach provides statistical tools to find the best possible prediction window. During about 181,000 min of monitoring of 400 patients, the algorithm demonstrated 94% accuracy, 85% sensitivity and 96% specificity in predicting hypotension within 30 min of the events. A high PPV of 81% was obtained, and the algorithm predicted 80% of hypotensive events 25 min prior to onset. It was shown that choosing a classification threshold that maximizes the F1 score during the training phase contributes to a high PPV and sensitivity. This study demonstrates the promising potential of machine-learning algorithms in the real-time prediction of hypotensive events in ICU settings based on short-term physiological history.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助半颗橙子采纳,获得10
1秒前
Rochelle发布了新的文献求助10
1秒前
NexusExplorer应助vilheim采纳,获得30
1秒前
huhuiya完成签到 ,获得积分10
1秒前
汪格森完成签到,获得积分10
1秒前
岑岑岑完成签到,获得积分10
2秒前
2秒前
一彤完成签到,获得积分10
3秒前
3秒前
4秒前
斯文败类应助purple采纳,获得10
4秒前
4秒前
刘娇发布了新的文献求助10
5秒前
5秒前
乾乾完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
月星发布了新的文献求助30
6秒前
ali完成签到,获得积分10
6秒前
6秒前
7秒前
英俊的铭应助一期一会采纳,获得10
7秒前
沈从云发布了新的文献求助10
7秒前
lian完成签到,获得积分10
7秒前
事不过三发布了新的文献求助30
8秒前
老实善愁完成签到,获得积分10
8秒前
SciGPT应助Shonso采纳,获得30
8秒前
KYN发布了新的文献求助10
9秒前
bluesiryao完成签到,获得积分10
9秒前
gilderf发布了新的文献求助10
9秒前
清爽的青丝完成签到,获得积分10
10秒前
10秒前
爱笑的醉卉完成签到,获得积分10
10秒前
10秒前
隐形曼青应助LJY采纳,获得10
10秒前
11秒前
peace完成签到,获得积分10
11秒前
12秒前
吖吖草完成签到 ,获得积分10
12秒前
科研通AI6应助Dean采纳,获得50
12秒前
干一口敌敌畏完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617995
求助须知:如何正确求助?哪些是违规求助? 4702644
关于积分的说明 14919816
捐赠科研通 4755944
什么是DOI,文献DOI怎么找? 2549907
邀请新用户注册赠送积分活动 1512744
关于科研通互助平台的介绍 1474288