A machine-learning approach to predicting hypotensive events in ICU settings

时间戳 计算机科学 机器学习 人工智能 算法 医学 数据挖掘 计算机安全
作者
Mina Chookhachizadeh Moghadam,Ehsan Masoumi Khalil Abad,Nader Bagherzadeh,Davinder Ramsingh,G.P. Li,Zeev N. Kain
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:118: 103626-103626 被引量:30
标识
DOI:10.1016/j.compbiomed.2020.103626
摘要

Predicting hypotension well in advance provides physicians with enough time to respond with proper therapeutic measures. However, the real-time prediction of hypotension with high positive predictive value (PPV) is a challenge. This is due to the dynamic changes in patients’ physiological status following drug administration, which limits the quantity of useful data available for the algorithm. To mimic real-time monitoring, we developed a machine-learning algorithm that uses most of the available data points from patients’ records to train and test the algorithm. The algorithm predicts hypotension up to 30 min in advance based on the data from only 5 min of patient physiological history. A novel evaluation method is also proposed to assess the performance of the algorithm as a function of time at every timestamp within 30 min of hypotension onset. This evaluation approach provides statistical tools to find the best possible prediction window. During about 181,000 min of monitoring of 400 patients, the algorithm demonstrated 94% accuracy, 85% sensitivity and 96% specificity in predicting hypotension within 30 min of the events. A high PPV of 81% was obtained, and the algorithm predicted 80% of hypotensive events 25 min prior to onset. It was shown that choosing a classification threshold that maximizes the F1 score during the training phase contributes to a high PPV and sensitivity. This study demonstrates the promising potential of machine-learning algorithms in the real-time prediction of hypotensive events in ICU settings based on short-term physiological history.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
一点发布了新的文献求助10
2秒前
852应助冰洁采纳,获得10
2秒前
发一篇JACS完成签到,获得积分10
3秒前
3秒前
3秒前
泥蝶发布了新的文献求助10
3秒前
3秒前
3秒前
霍冷荷完成签到,获得积分10
3秒前
4秒前
4秒前
Jasper应助yuanium采纳,获得10
5秒前
大胆听莲发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
7秒前
ruby完成签到,获得积分10
7秒前
健忘尔安完成签到 ,获得积分10
7秒前
7秒前
小SU哥发布了新的文献求助100
8秒前
爆米花应助Inbres采纳,获得10
8秒前
酷波er应助zhoumuyun采纳,获得10
9秒前
asd关闭了asd文献求助
9秒前
Bake完成签到,获得积分10
10秒前
jinling完成签到,获得积分10
10秒前
故意的篮球完成签到,获得积分20
10秒前
11秒前
11秒前
11秒前
希望天下0贩的0应助322628采纳,获得10
11秒前
12秒前
12秒前
gnr2000完成签到,获得积分10
13秒前
李爱国应助冷静的奇迹采纳,获得10
14秒前
王梦瑶发布了新的文献求助10
14秒前
完美世界应助大胆听莲采纳,获得10
14秒前
科研通AI2S应助shi采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770876
求助须知:如何正确求助?哪些是违规求助? 5588215
关于积分的说明 15425761
捐赠科研通 4904256
什么是DOI,文献DOI怎么找? 2638647
邀请新用户注册赠送积分活动 1586521
关于科研通互助平台的介绍 1541641