A machine-learning approach to predicting hypotensive events in ICU settings

时间戳 计算机科学 机器学习 人工智能 算法 医学 数据挖掘 计算机安全
作者
Mina Chookhachizadeh Moghadam,Ehsan Masoumi Khalil Abad,Nader Bagherzadeh,Davinder Ramsingh,G.P. Li,Zeev N. Kain
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:118: 103626-103626 被引量:30
标识
DOI:10.1016/j.compbiomed.2020.103626
摘要

Predicting hypotension well in advance provides physicians with enough time to respond with proper therapeutic measures. However, the real-time prediction of hypotension with high positive predictive value (PPV) is a challenge. This is due to the dynamic changes in patients’ physiological status following drug administration, which limits the quantity of useful data available for the algorithm. To mimic real-time monitoring, we developed a machine-learning algorithm that uses most of the available data points from patients’ records to train and test the algorithm. The algorithm predicts hypotension up to 30 min in advance based on the data from only 5 min of patient physiological history. A novel evaluation method is also proposed to assess the performance of the algorithm as a function of time at every timestamp within 30 min of hypotension onset. This evaluation approach provides statistical tools to find the best possible prediction window. During about 181,000 min of monitoring of 400 patients, the algorithm demonstrated 94% accuracy, 85% sensitivity and 96% specificity in predicting hypotension within 30 min of the events. A high PPV of 81% was obtained, and the algorithm predicted 80% of hypotensive events 25 min prior to onset. It was shown that choosing a classification threshold that maximizes the F1 score during the training phase contributes to a high PPV and sensitivity. This study demonstrates the promising potential of machine-learning algorithms in the real-time prediction of hypotensive events in ICU settings based on short-term physiological history.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空心胶囊完成签到,获得积分10
刚刚
独特的凝云完成签到 ,获得积分10
刚刚
cosmos完成签到 ,获得积分10
1秒前
觅兴完成签到,获得积分0
1秒前
逍遥完成签到,获得积分10
1秒前
wjw关闭了wjw文献求助
2秒前
寒冷尔蝶完成签到,获得积分10
2秒前
YHR完成签到,获得积分10
2秒前
离离发布了新的文献求助10
2秒前
达不刘完成签到 ,获得积分10
2秒前
LL完成签到,获得积分10
2秒前
科研通AI2S应助323采纳,获得10
2秒前
2秒前
limz完成签到,获得积分10
3秒前
珊珊完成签到,获得积分10
3秒前
WU完成签到,获得积分10
4秒前
KON完成签到,获得积分10
4秒前
5秒前
斑马兽完成签到,获得积分10
5秒前
lww完成签到,获得积分10
6秒前
大肉猪完成签到,获得积分10
6秒前
6秒前
Cedric完成签到,获得积分10
6秒前
6秒前
嘟嘟请让一让完成签到,获得积分10
7秒前
7秒前
7秒前
DawnySun完成签到,获得积分10
7秒前
苏哲发布了新的文献求助10
8秒前
科研通AI2S应助YEYE采纳,获得10
8秒前
云仄完成签到,获得积分10
8秒前
望除完成签到,获得积分10
8秒前
8秒前
寒冷子轩发布了新的文献求助10
9秒前
小小完成签到 ,获得积分10
9秒前
莫妮卡卡完成签到,获得积分10
9秒前
科研通AI2S应助Wwz采纳,获得10
9秒前
坦率耳机完成签到,获得积分0
9秒前
一只龟龟完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402166
求助须知:如何正确求助?哪些是违规求助? 4520720
关于积分的说明 14081778
捐赠科研通 4434524
什么是DOI,文献DOI怎么找? 2434397
邀请新用户注册赠送积分活动 1426632
关于科研通互助平台的介绍 1405383