A machine-learning approach to predicting hypotensive events in ICU settings

时间戳 计算机科学 机器学习 人工智能 算法 医学 数据挖掘 计算机安全
作者
Mina Chookhachizadeh Moghadam,Ehsan Masoumi Khalil Abad,Nader Bagherzadeh,Davinder Ramsingh,G.P. Li,Zeev N. Kain
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:118: 103626-103626 被引量:30
标识
DOI:10.1016/j.compbiomed.2020.103626
摘要

Predicting hypotension well in advance provides physicians with enough time to respond with proper therapeutic measures. However, the real-time prediction of hypotension with high positive predictive value (PPV) is a challenge. This is due to the dynamic changes in patients’ physiological status following drug administration, which limits the quantity of useful data available for the algorithm. To mimic real-time monitoring, we developed a machine-learning algorithm that uses most of the available data points from patients’ records to train and test the algorithm. The algorithm predicts hypotension up to 30 min in advance based on the data from only 5 min of patient physiological history. A novel evaluation method is also proposed to assess the performance of the algorithm as a function of time at every timestamp within 30 min of hypotension onset. This evaluation approach provides statistical tools to find the best possible prediction window. During about 181,000 min of monitoring of 400 patients, the algorithm demonstrated 94% accuracy, 85% sensitivity and 96% specificity in predicting hypotension within 30 min of the events. A high PPV of 81% was obtained, and the algorithm predicted 80% of hypotensive events 25 min prior to onset. It was shown that choosing a classification threshold that maximizes the F1 score during the training phase contributes to a high PPV and sensitivity. This study demonstrates the promising potential of machine-learning algorithms in the real-time prediction of hypotensive events in ICU settings based on short-term physiological history.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
李爱国应助缥缈傥采纳,获得10
刚刚
1秒前
MechaniKer完成签到,获得积分10
1秒前
务实的太君完成签到 ,获得积分10
1秒前
1秒前
2秒前
循环发布了新的文献求助10
2秒前
12等等完成签到,获得积分10
2秒前
孙一斤完成签到,获得积分10
2秒前
2秒前
刻苦觅荷发布了新的文献求助10
2秒前
2秒前
Zerta发布了新的文献求助10
2秒前
2秒前
921完成签到,获得积分10
2秒前
wenxy完成签到,获得积分10
2秒前
3秒前
3秒前
梦XING发布了新的文献求助10
3秒前
4秒前
搜集达人应助xinxin采纳,获得10
4秒前
Asteria发布了新的文献求助30
4秒前
生物发布了新的文献求助10
4秒前
点点发布了新的文献求助10
5秒前
wa发布了新的文献求助10
5秒前
5秒前
5秒前
在在完成签到,获得积分10
6秒前
wenxy发布了新的文献求助10
6秒前
Dee发布了新的文献求助10
6秒前
今后应助麦客采纳,获得10
6秒前
hobowei发布了新的文献求助100
7秒前
7秒前
春二虫发布了新的文献求助10
7秒前
酷炫夜白完成签到,获得积分10
7秒前
米粒应助低空飞行采纳,获得10
7秒前
帅气的天磊完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661694
求助须知:如何正确求助?哪些是违规求助? 4839476
关于积分的说明 15096992
捐赠科研通 4820345
什么是DOI,文献DOI怎么找? 2579832
邀请新用户注册赠送积分活动 1534117
关于科研通互助平台的介绍 1492791