A machine-learning approach to predicting hypotensive events in ICU settings

时间戳 计算机科学 机器学习 人工智能 算法 医学 数据挖掘 计算机安全
作者
Mina Chookhachizadeh Moghadam,Ehsan Masoumi Khalil Abad,Nader Bagherzadeh,Davinder Ramsingh,G.P. Li,Zeev N. Kain
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:118: 103626-103626 被引量:30
标识
DOI:10.1016/j.compbiomed.2020.103626
摘要

Predicting hypotension well in advance provides physicians with enough time to respond with proper therapeutic measures. However, the real-time prediction of hypotension with high positive predictive value (PPV) is a challenge. This is due to the dynamic changes in patients’ physiological status following drug administration, which limits the quantity of useful data available for the algorithm. To mimic real-time monitoring, we developed a machine-learning algorithm that uses most of the available data points from patients’ records to train and test the algorithm. The algorithm predicts hypotension up to 30 min in advance based on the data from only 5 min of patient physiological history. A novel evaluation method is also proposed to assess the performance of the algorithm as a function of time at every timestamp within 30 min of hypotension onset. This evaluation approach provides statistical tools to find the best possible prediction window. During about 181,000 min of monitoring of 400 patients, the algorithm demonstrated 94% accuracy, 85% sensitivity and 96% specificity in predicting hypotension within 30 min of the events. A high PPV of 81% was obtained, and the algorithm predicted 80% of hypotensive events 25 min prior to onset. It was shown that choosing a classification threshold that maximizes the F1 score during the training phase contributes to a high PPV and sensitivity. This study demonstrates the promising potential of machine-learning algorithms in the real-time prediction of hypotensive events in ICU settings based on short-term physiological history.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
patrickli发布了新的文献求助30
1秒前
玻璃弹珠完成签到,获得积分10
2秒前
水蜜桃完成签到 ,获得积分10
3秒前
3秒前
Sigma完成签到,获得积分20
3秒前
xixi很困完成签到,获得积分10
4秒前
4秒前
李海平完成签到 ,获得积分10
4秒前
5秒前
5秒前
活泼忆丹完成签到,获得积分10
5秒前
Magpie完成签到,获得积分10
5秒前
6秒前
7秒前
月月发布了新的文献求助10
8秒前
jenningseastera应助LiWen采纳,获得10
8秒前
8秒前
武淑晴发布了新的文献求助10
9秒前
10秒前
luibia发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
愉快书琴发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
13秒前
落寞访云发布了新的文献求助10
14秒前
14秒前
NexusExplorer应助OVO采纳,获得10
14秒前
14秒前
嗨好完成签到,获得积分10
14秒前
14秒前
hello_25baby完成签到,获得积分10
14秒前
时玥发布了新的文献求助10
16秒前
AKRAMJUAIM发布了新的文献求助10
16秒前
16秒前
ban发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738119
求助须知:如何正确求助?哪些是违规求助? 5375696
关于积分的说明 15337007
捐赠科研通 4881243
什么是DOI,文献DOI怎么找? 2623424
邀请新用户注册赠送积分活动 1572144
关于科研通互助平台的介绍 1528995