Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan

褐藻糖胶 疣状疣 多糖 化学 生物 微生物学 生物化学 基因 拟杆菌 16S核糖体RNA
作者
Andreas Sichert,Christopher H. Corzett,Matthew S. Schechter,Frank Unfried,Stephanie Markert,Dörte Becher,Antonio Fernàndez-Guerra,Manuel Liebeke,Thomas Schweder,Martin F. Polz,Jan‐Hendrik Hehemann
出处
期刊:Nature microbiology [Nature Portfolio]
卷期号:5 (8): 1026-1039 被引量:253
标识
DOI:10.1038/s41564-020-0720-2
摘要

Brown algae are important players in the global carbon cycle by fixing carbon dioxide into 1 Gt of biomass annually, yet the fate of fucoidan-their major cell wall polysaccharide-remains poorly understood. Microbial degradation of fucoidans is slower than that of other polysaccharides, suggesting that fucoidans are more recalcitrant and may sequester carbon in the ocean. This may be due to the complex, branched and highly sulfated structure of fucoidans, which also varies among species of brown algae. Here, we show that 'Lentimonas' sp. CC4, belonging to the Verrucomicrobia, acquired a remarkably complex machinery for the degradation of six different fucoidans. The strain accumulated 284 putative fucoidanases, including glycoside hydrolases, sulfatases and carbohydrate esterases, which are primarily located on a 0.89-megabase pair plasmid. Proteomics reveals that these enzymes assemble into substrate-specific pathways requiring about 100 enzymes per fucoidan from different species of brown algae. These enzymes depolymerize fucoidan into fucose, which is metabolized in a proteome-costly bacterial microcompartment that spatially constrains the metabolism of the toxic intermediate lactaldehyde. Marine metagenomes and microbial genomes show that Verrucomicrobia including 'Lentimonas' are abundant and highly specialized degraders of fucoidans and other complex polysaccharides. Overall, the complexity of the pathways underscores why fucoidans are probably recalcitrant and more slowly degraded, since only highly specialized organisms can effectively degrade them in the ocean.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助冬天该很好采纳,获得10
2秒前
jinlioze发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI2S应助Su采纳,获得10
6秒前
zinnn应助yyyyyy采纳,获得10
8秒前
认真难敌发布了新的文献求助10
9秒前
皮崇知发布了新的文献求助10
10秒前
12秒前
标致冰海完成签到 ,获得积分10
12秒前
13秒前
小北完成签到 ,获得积分10
14秒前
研友_LwXJgn完成签到,获得积分10
14秒前
14秒前
16秒前
17秒前
李健的小迷弟应助猪肉铺采纳,获得10
18秒前
烟花应助musong采纳,获得10
19秒前
zhuzhu完成签到 ,获得积分10
20秒前
钙离子发布了新的文献求助10
23秒前
23秒前
达布溜发布了新的文献求助10
23秒前
25秒前
科研通AI2S应助helllxi采纳,获得10
28秒前
认真难敌完成签到,获得积分20
29秒前
大个应助矿泉水采纳,获得10
29秒前
猪肉铺发布了新的文献求助10
29秒前
31秒前
达布溜完成签到,获得积分10
35秒前
小马甲应助顾翩翩采纳,获得10
35秒前
musong发布了新的文献求助10
35秒前
徐伟康发布了新的文献求助10
36秒前
葉鳳怡完成签到 ,获得积分10
36秒前
fang完成签到 ,获得积分10
38秒前
嗨Honey发布了新的文献求助10
39秒前
科研通AI2S应助大力的从菡采纳,获得10
44秒前
神勇的草莓完成签到,获得积分10
47秒前
bkagyin应助LHY采纳,获得10
48秒前
helllxi完成签到,获得积分10
50秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3921504
求助须知:如何正确求助?哪些是违规求助? 3466313
关于积分的说明 10942060
捐赠科研通 3194850
什么是DOI,文献DOI怎么找? 1765356
邀请新用户注册赠送积分活动 855522
科研通“疑难数据库(出版商)”最低求助积分说明 794854