Defect simulation in SEM images using generative adversarial networks

计算机科学 生成语法 人工神经网络 人工智能 生成对抗网络 图像处理 薄脆饼 图像(数学) 计算机工程 深度学习 计算机视觉 机器学习 模式识别(心理学) 工程类 电气工程
作者
Zhe Wang,Liangjiang Yu,Lingling Pu
出处
期刊:Metrology, Inspection, and Process Control for Semiconductor Manufacturing XXXV 卷期号:: 20-20 被引量:12
标识
DOI:10.1117/12.2581881
摘要

SEM image processing is an important part of semiconductor manufacturing. However, one difficulty of SEM image processing is collecting enough defect-containing samples of defect-of-interests (DOI) because many DOIs are very rare. This problem becomes more prominent for Machine Learning (ML) or Deep Learning (DL) based image processing techniques since they require large amount of samples for training. In this paper, we present a Generative Adversarial Networks (GAN) based defect simulation framework to tackle this problem. The fundamental insight of our approach is that we treat the defect simulation problem as an image style transfer problem. Following this thought, we train a neural network model to turn a defect-free image into a defect- containing image. We evaluate the proposed defect simulation framework by using it as a data augmentation method for ML/DL based Automatic Defect Classification (ADC) and Image Quality Enhancement (IQE) on a Line Pattern Dataset, which is collected with ASML ePTMand eScan R series inspection tools from an ASML standard wafer. The experimental results show a significant performance gain for both ADC and IQE. The result proves our defect simulation framework is effective. We expect GAN based defect simulation can have a broader impact in many other SEM image development and engineering applications in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
空耳大师发布了新的文献求助10
1秒前
2秒前
西瓜完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
乔治发布了新的文献求助20
4秒前
小二郎应助研友_VZGvVn采纳,获得10
4秒前
无花果应助张姣姣采纳,获得10
4秒前
烟花应助qyn1234566采纳,获得50
4秒前
充电宝应助xx采纳,获得10
5秒前
5秒前
安详的宝川完成签到 ,获得积分10
5秒前
6秒前
秀儿发布了新的文献求助10
7秒前
忠诚卫士发布了新的文献求助10
7秒前
更深的蓝发布了新的文献求助10
7秒前
平常冬灵完成签到,获得积分10
9秒前
9秒前
穆亦擎发布了新的文献求助10
10秒前
11秒前
Hello应助musicyy222采纳,获得10
12秒前
13秒前
更深的蓝完成签到,获得积分10
13秒前
英吉利25发布了新的文献求助30
14秒前
14秒前
韩韩发布了新的文献求助10
15秒前
16秒前
16秒前
张姣姣发布了新的文献求助10
19秒前
研友_VZGvVn发布了新的文献求助10
19秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
yyds应助xuan采纳,获得50
22秒前
研友_VZGvVn完成签到,获得积分10
23秒前
24秒前
善学以致用应助echo采纳,获得10
25秒前
小二郎应助想吃脆脆采纳,获得10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532789
求助须知:如何正确求助?哪些是违规求助? 4621444
关于积分的说明 14578210
捐赠科研通 4561414
什么是DOI,文献DOI怎么找? 2499282
邀请新用户注册赠送积分活动 1479215
关于科研通互助平台的介绍 1450443