成核
电解质
枝晶(数学)
电镀
溶解
电镀(地质)
化学工程
电流密度
相间
剥离(纤维)
材料科学
透射电子显微镜
沉积(地质)
化学
纳米技术
图层(电子)
电极
复合材料
物理化学
工程类
量子力学
物理
数学
地球物理学
生物
遗传学
古生物学
几何学
有机化学
沉积物
地质学
作者
Shengda D. Pu,Gong Chen,Xiangwen Gao,Ziyang Ning,Sixie Yang,John‐Joseph Marie,Boyang Liu,Robert A. House,Gareth O. Hartley,Jun Luo,Peter G. Bruce,Alex W. Robertson
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2020-06-16
卷期号:5 (7): 2283-2290
被引量:70
标识
DOI:10.1021/acsenergylett.0c01153
摘要
Multivalent cation rechargeable batteries, including those based on Ca, Mg, Al, etc., have attracted considerable interest as candidates for beyond Li-ion batteries. Recent developments have realized promising electrolyte compositions for rechargeable Ca batteries; however, an in-depth understanding of the Ca plating and stripping behavior and the mechanisms by which adverse dendritic growth may occur remains underdeveloped. In this work, via in situ transmission electron microscopy, we have captured the real-time nucleation, growth, and dissolution of Ca and the formation of dead Ca and demonstrated the critical role of current density and the solid-electrolyte interphase layer in controlling the plating morphology. In particular, the interface was found to influence Ca deposition morphology and can lead to Ca dendrite growth under unexpected conditions. These observations allow us to propose a model explaining the preferred conditions for reversible and efficient Ca plating.
科研通智能强力驱动
Strongly Powered by AbleSci AI