内吞作用
细胞生物学
Jurkat细胞
内体
菲利平
网格蛋白
生物
化学
受体
生物化学
细胞内
T细胞
膜
免疫学
免疫系统
作者
Prem S. Subramaniam,Howard M. Johnson
出处
期刊:Journal of Immunology
[The American Association of Immunologists]
日期:2002-08-15
卷期号:169 (4): 1959-1969
被引量:71
标识
DOI:10.4049/jimmunol.169.4.1959
摘要
IFN-gamma contains a nuclear localization sequence that may play a role in the nuclear transport of activated STAT1alpha via a complex of IFN-gamma/IFN-gamma receptor (IFNGR)-1/STAT1alpha with the nuclear importer nucleoprotein interactor 1. In this study, we examine the mechanism of endocytosis of IFNGR-1 and the relationship of its nuclear translocation to that of STAT1alpha. In untreated WISH cells, both IFNGR-1 and IFNGR-2 were constitutively localized within caveolae-like microdomains isolated from plasma membrane. However, treatment of cells with IFN-gamma resulted in rapid migration of IFNGR-1, but not IFNGR-2, from these microdomains. Filipin pretreatment, which specifically inhibits endocytosis from caveolae-like microdomains, inhibited the nuclear translocation of IFN-gamma and IFNGR-1 as well as the tyrosine phosphorylation and nuclear translocation of STAT1alpha, but did not affect the binding of IFN-gamma to these cells. In the Jurkat T lymphocyte cell line, which does not express caveolin-1, nuclear translocation of IFNGR-1 and STAT1alpha were similarly inhibited by filipin pretreatment. Isolation of lipid microdomains from Jurkat cells showed that both IFNGR-1 and IFNGR-2 were associated with lipid microdomains only after stimulation with IFN-gamma, suggesting that the IFNGR subunits are recruited to lipid microdomains by IFN-gamma binding in lymphocytes (Jurkat) in contrast to their constitutive presence in epithelial (WISH) cells. In contrast, treatments that block clathrin-dependent endocytosis did not inhibit either activation or nuclear translocation of STAT1alpha or the nuclear translocation of IFN-gamma or IFNGR-1. Thus, membrane lipid microdomains play an important role in IFN-gamma-initiated endocytic events involving IFNGR-1, and the nuclear translocation of IFN-gamma, IFNGR-1, and STAT1alpha.
科研通智能强力驱动
Strongly Powered by AbleSci AI