已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent fault diagnosis scheme via multi-module supervised-learning network with essential features capture-regulation strategy

反褶积 分类器(UML) 计算机科学 脉冲(物理) 人工智能 模式识别(心理学) 数据挖掘 提取器 机器学习 工程类 算法 工艺工程 量子力学 物理
作者
Yuanhong Chang,Qiang Chen,Jinglong Chen,Shuilong He,Fudong Li,Zitong Zhou
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:129: 459-475 被引量:4
标识
DOI:10.1016/j.isatra.2022.02.038
摘要

The performance of data driven-based intelligent diagnosis method greatly depends on the quantity and quality of data. Nevertheless, due to realistic limitations, failure data is hard to acquire, which makes the training process of numerous intelligent models unsatisfactory and leads to performance degradation Aiming at this problem, considering the local impulse characteristics as minimum diagnosable units, this paper proposes a signal adaptive augmentation network (SAAN) to effectively construct artificial samples for amplifying fault data volume. The SAAN consists of three sub-structures: impulse extractor, regulator, and classifier. The impulse extractor combines inner product matching principle to extract the local impulse features from insufficient samples to construct massive initial artificial samples. The regulator adopts convolution and deconvolution frameworks to regulate and reconstruct the initial artificial samples by specially designed synthetic loss function, which makes artificial samples have same characteristic distribution as real samples. The augmented method is used for validation on three bearing data with some advanced algorithms. Besides, a focal normalized network is designed for classification under small samples. Relevant experiments indicate that the SAAN shows a competitive performance with existing state-of-art diagnostic methods, which can helpfully improve recognition accuracies of various diagnostic models by 5%–35% under small sample prerequisite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cfplhys发布了新的文献求助10
刚刚
英俊的铭应助西瓜汽水采纳,获得10
1秒前
言午完成签到,获得积分10
1秒前
3秒前
周子完成签到,获得积分10
5秒前
xf潇洒哥完成签到,获得积分20
6秒前
6秒前
ronnie发布了新的文献求助10
9秒前
9秒前
9秒前
nenoaowu发布了新的文献求助10
12秒前
酷波er应助大猫采纳,获得10
15秒前
15秒前
ddj完成签到 ,获得积分10
16秒前
科研通AI5应助Yy采纳,获得10
17秒前
fwda1000完成签到 ,获得积分10
17秒前
19秒前
20秒前
恋雅颖月发布了新的文献求助10
21秒前
22秒前
25秒前
26秒前
阿吉完成签到,获得积分10
28秒前
Hello应助恋雅颖月采纳,获得10
29秒前
real发布了新的文献求助10
31秒前
完美世界应助言言采纳,获得10
32秒前
Yy发布了新的文献求助10
32秒前
32秒前
一只小鬼Q完成签到 ,获得积分10
33秒前
断棍豪斯完成签到,获得积分10
33秒前
homer完成签到,获得积分10
35秒前
37秒前
lvlulu发布了新的文献求助10
38秒前
39秒前
无语的小熊猫完成签到 ,获得积分10
39秒前
orixero应助优雅青梦采纳,获得10
41秒前
41秒前
Tyy完成签到,获得积分20
42秒前
动漫大师发布了新的文献求助10
42秒前
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784640
求助须知:如何正确求助?哪些是违规求助? 3329746
关于积分的说明 10243399
捐赠科研通 3045072
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800458
科研通“疑难数据库(出版商)”最低求助积分说明 759391