Implementation of volumetric-modulated arc therapy for locally advanced breast cancer patients: Dosimetric comparison with deliverability consideration of planning techniques and predictions of patient-specific QA results via supervised machine learning

工作量 放射治疗计划 医学 计算机科学 医学物理学 机器学习 人工智能 放射治疗 放射科 操作系统
作者
C. Noblet,Marie Duthy,Frédéric Coste,Marie Saliou,Benoît Samain,Franck Drouet,Thomas Papazyan,Matthieu Moreau
出处
期刊:Physica Medica [Elsevier BV]
卷期号:96: 18-31 被引量:8
标识
DOI:10.1016/j.ejmp.2022.02.015
摘要

Abstract

Purpose

The aim of this study was to implement a clinically deliverable VMAT planning technique dedicated to advanced breast cancer, and to predict failed QA using a machine learning (ML) model to optimize the QA workload.

Methods

For three planning methods (2A: 2-partial arc, 2AS: 2-partial arc with splitting, 4A: 4-partial arc), dosimetric results were compared with patient-specific QA performed with the electronic portal imaging device of the linac. A dataset was built with the pass/fail status of the plans and complexity metrics. It was divided into training and testing sets. An ML metamodel combining predictions from six base classifiers was trained on the training set to predict plans as ‘pass' or ‘fail'. The predictive performances were evaluated using the unseen data of the testing set.

Results

The dosimetric comparison highlighted that 4A was the highest dosimetric performant method but also the poorest performant in the QA process. 2AS spared the best heart, but provided the highest dose to the contralateral breast and lowest node coverage. 2A provides a dosimetric compromise between organ at risk sparing and PTV coverage with satisfactory QA results. The metamodel had a median predictive sensitivity of 73% and a median specificity of 91%.

Conclusions

The 2A method was selected to calculate clinically deliverable VMAT plans; however, the 2AS method was maintained when the heart was of particular importance and breath-hold techniques were not applicable. The metamodel provides promising predictive performance, and it is intended to be improved as a larger dataset becomes available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧心的红酒完成签到,获得积分20
刚刚
害怕的路灯完成签到 ,获得积分10
2秒前
2秒前
3秒前
彭于晏应助yang采纳,获得10
3秒前
203发布了新的文献求助10
4秒前
xcltzh2517完成签到,获得积分10
4秒前
5秒前
5秒前
gank发布了新的文献求助10
6秒前
6秒前
23333发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
科研通AI2S应助清脆巧蕊采纳,获得10
9秒前
mimimi发布了新的文献求助10
9秒前
科研小白发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
香蕉觅云应助miaomiao采纳,获得10
10秒前
盏盏完成签到 ,获得积分10
11秒前
Adream发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
dapan0622完成签到,获得积分10
13秒前
星星亮举报刘刘求助涉嫌违规
14秒前
14秒前
huihui发布了新的文献求助10
14秒前
田様应助gank采纳,获得10
15秒前
喜悦的威完成签到,获得积分10
17秒前
yang发布了新的文献求助10
17秒前
浮游应助小小青蛙笑采纳,获得30
17秒前
2478甯发布了新的文献求助10
18秒前
独特思真发布了新的文献求助10
18秒前
禾伙人完成签到,获得积分10
18秒前
19秒前
亮亮完成签到 ,获得积分10
19秒前
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051463
求助须知:如何正确求助?哪些是违规求助? 4278787
关于积分的说明 13337536
捐赠科研通 4094019
什么是DOI,文献DOI怎么找? 2240725
邀请新用户注册赠送积分活动 1247199
关于科研通互助平台的介绍 1176337