亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PTP-STGCN: Pedestrian Trajectory Prediction Based on a Spatio-temporal Graph Convolutional Neural Network

计算机科学 行人 弹道 图形 推论 卷积神经网络 人工智能 变压器 实时计算 理论计算机科学 物理 量子力学 天文 电压 运输工程 工程类
作者
Jing Lian,Weiwei Ren,Linhui Li,Yafu Zhou,Bin Zhou
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:53 (3): 2862-2878 被引量:29
标识
DOI:10.1007/s10489-022-03524-1
摘要

It is the prerequisite to ensure the safety of road users in traffic scenes for the application of autonomous vehicles. Pedestrians are the main participants in traffic scenes, and reasonable inference and prediction of their future trajectories are crucial for autonomous driving technology and road safety. Pedestrian trajectories are highly dynamic, apparently random, and complex to interact with traffic environment agents; therefore, selective modeling of spatial interaction and temporal dependence of pedestrians is necessary. To address this challenge, this paper proposes a novel pedestrian trajectory prediction model based on a spatio-temporal graph convolutional network (PTP-STGCN). Specifically, a new crowd interaction attention (CIA) function is defined to quantify the interaction information between adjacent pedestrians better. This function captures the spatial interaction features of pedestrians at each time step by a spatial graph convolution network (S-GCN). Meanwhile, the time-series motion features of each pedestrian are extracted by a temporal transformer network (T-transformer), and a spatio-temporal interaction graph of pedestrian features is constructed by the STGCN composed of the S-GCN and T-transformer. Finally, a time-extrapolator convolutional neural network (TXP-CNN) is used to predict pedestrian trajectories in the time dimension of the STGCN. The experimental results on the ETH and UCY datasets show that the proposed model achieves better performance than the state-of-the-art baselines regarding the average displacement error (ADE) and final displacement error (FDE). Due to the excellent performance in pedestrian trajectory prediction, the proposed network achieves more predictive final planned trajectory of an autonomous vehicle, while avoiding unnecessary trajectory changes and collision risk, thus providing a promising solution for practical pedestrian trajectory prediction applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
liam发布了新的文献求助10
7秒前
34秒前
42秒前
1分钟前
耳东陈完成签到 ,获得积分10
1分钟前
wang发布了新的文献求助10
1分钟前
wang完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
个性归尘应助liam采纳,获得30
1分钟前
2分钟前
2分钟前
科研通AI5应助liam采纳,获得10
2分钟前
深情安青应助ektyz采纳,获得10
2分钟前
溶酶菌发布了新的文献求助10
2分钟前
科研通AI5应助溶酶菌采纳,获得10
3分钟前
kingcoffee完成签到 ,获得积分10
3分钟前
科研通AI5应助liam采纳,获得10
3分钟前
3分钟前
3分钟前
ektyz发布了新的文献求助10
3分钟前
3分钟前
4分钟前
zz完成签到,获得积分10
4分钟前
zz发布了新的文献求助10
4分钟前
jimmy_bytheway完成签到,获得积分0
5分钟前
HJJHJH发布了新的文献求助10
5分钟前
科研通AI2S应助HJJHJH采纳,获得10
5分钟前
5分钟前
5分钟前
研友_VZG7GZ应助西门晴采纳,获得10
5分钟前
5分钟前
liam发布了新的文献求助10
6分钟前
完美世界应助无私元芹采纳,获得10
6分钟前
6分钟前
6分钟前
liam发布了新的文献求助10
6分钟前
Steven发布了新的文献求助30
6分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837484
求助须知:如何正确求助?哪些是违规求助? 3379589
关于积分的说明 10509921
捐赠科研通 3099208
什么是DOI,文献DOI怎么找? 1707000
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772586