Bearing Fault Diagnosis of End‐to‐End Model Design Based on 1DCNN‐GRU Network

端到端原则 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 断层(地质) 特征提取 深度学习 人工神经网络 方位(导航) 特征(语言学) 语言学 哲学 地震学 地质学
作者
Liu Zhiwei
出处
期刊:Discrete Dynamics in Nature and Society [Hindawi Publishing Corporation]
卷期号:2022 (1) 被引量:18
标识
DOI:10.1155/2022/7167821
摘要

At present, the complex and varying operating conditions of bearings make the feature extraction become difficult and lack adaptability. An end‐to‐end fault diagnosis is proposed. A convolutional neural network (CNN) is good at mining spatial features of samples and has the advantage of “end‐to‐end.” Gates recurrent neural (GRU) network has good performance in processing time‐dependent characteristics of signals. We design an end‐to‐end adaptive 1DCNN‐GRU model (i.e., one‐dimensional neural network and gated recurrent unit) which combines the advantages of CNN’s spatial processing capability and GRU’s time‐sequence processing capability. CNN is applied instead of manual feature extraction to extract effective features adaptively. Moreover, GRU can learn further the features processed through the CNN and achieve the fault diagnosis. It was shown that the proposed model could adaptively extract spatial and time‐dependent features from the raw vibration signal to achieve an “end‐to‐end” fault diagnosis. The performance of the proposed method is validated using the bearing data collected by Case Western Reserve University (CWRU), and the results showed that the proposed model had recognition accuracy higher than 99%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
tianzml0发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
3秒前
ztt发布了新的文献求助10
4秒前
4秒前
斯文败类应助嘎嘎嘎嘎采纳,获得10
4秒前
4秒前
4秒前
减简发布了新的文献求助10
5秒前
归途发布了新的文献求助30
6秒前
syx发布了新的文献求助10
6秒前
瘦瘦凌丝完成签到 ,获得积分10
7秒前
爆米花应助称心鸵鸟采纳,获得10
7秒前
周钰波完成签到,获得积分10
8秒前
9秒前
丁不烦发布了新的文献求助10
9秒前
chaming发布了新的文献求助10
10秒前
10秒前
10秒前
爆米花应助WN采纳,获得10
11秒前
归途完成签到,获得积分20
12秒前
汪汪淬冰冰完成签到,获得积分10
12秒前
wanci应助Eeeee采纳,获得10
13秒前
14秒前
时尚俊驰发布了新的文献求助10
15秒前
15秒前
16秒前
香蕉觅云应助雪白机器猫采纳,获得30
16秒前
冉遗发布了新的文献求助10
16秒前
17秒前
17秒前
情怀应助Yancent采纳,获得10
17秒前
shangx发布了新的文献求助10
18秒前
Cold完成签到,获得积分10
18秒前
Akim应助坚定的小蘑菇采纳,获得10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792079
求助须知:如何正确求助?哪些是违规求助? 3336334
关于积分的说明 10280285
捐赠科研通 3052927
什么是DOI,文献DOI怎么找? 1675426
邀请新用户注册赠送积分活动 803446
科研通“疑难数据库(出版商)”最低求助积分说明 761349