MRI-based whole-tumor radiomics to classify the types of pediatric posterior fossa brain tumor

医学 随机森林 髓母细胞瘤 放射科 室管膜瘤 无线电技术 毛细胞星形细胞瘤 磁共振成像 星形细胞瘤 脑瘤 分类器(UML) 胶质瘤 人工智能 病理 计算机科学 癌症研究
作者
Shuang Wang,Guanghui Wang,Weiya Zhang,Jian He,Wei Sun,Ming Yang,Sun Yu,Andrew C. Peet
出处
期刊:Neurochirurgie [Elsevier BV]
卷期号:68 (6): 601-607 被引量:16
标识
DOI:10.1016/j.neuchi.2022.05.004
摘要

Differential diagnosis between medulloblastoma (MB), ependymoma (EP) and astrocytoma (PA) is important due to differing medical treatment strategies and predicted survival. The aim of this study was to investigate non-invasive MRI-based radiomic analysis of whole tumors to classify the histologic tumor types of pediatric posterior fossa brain tumor and improve the accuracy of discrimination, using a random forest classifier.MRI images of 99 patients, with 59 MBs, 13 EPs and 27 PAs histologically confirmed by surgery and pathology before treatment, were included in this retrospective study. Registration was performed between the three sequences, and high- throughput features were extracted from manually segmented tumors on MR images of each case. The forest-based feature selection method was adopted to select the top ten significant features. Finally, the results were compared and analyzed according to the classification.The top ten contributions according to the classifier of wavelet features all came from the ADC sequence. The random forest classifier achieved 100% accuracy on the training data and validated the best accuracy (0.938): sensitivity=1.000, 0.948 and 0.808, specificity=0.952, 0.926 and 1.000 for EP, MB and PA, respectively.A random forest classifier based on the ADC sequence of the whole tumor provides more quantitative information than TIWI and T2WI in differentiating pediatric posterior fossa brain tumors. In particular, the histogram percentile value showed great superiority, which added diagnostic value in pediatric neuro-oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助心灵美的宛丝采纳,获得10
2秒前
zql发布了新的文献求助10
2秒前
MQ完成签到,获得积分10
4秒前
6秒前
6秒前
7秒前
7秒前
TT完成签到,获得积分20
8秒前
qq发布了新的文献求助10
10秒前
10秒前
达利园发布了新的文献求助10
11秒前
大模型应助就拒绝内耗采纳,获得10
13秒前
13秒前
修狗叫大黄完成签到,获得积分10
14秒前
14秒前
Lighten完成签到 ,获得积分10
15秒前
Lian完成签到,获得积分10
16秒前
个性元枫发布了新的文献求助10
16秒前
18秒前
所所应助科研通管家采纳,获得10
19秒前
19秒前
nannan发布了新的文献求助10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
任伟超完成签到,获得积分10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
19秒前
我是老大应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得30
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
22秒前
植物外泌体完成签到,获得积分10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171461
求助须知:如何正确求助?哪些是违规求助? 3706922
关于积分的说明 11695769
捐赠科研通 3392549
什么是DOI,文献DOI怎么找? 1860814
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754