Automated Human Use Mapping of Social Infrastructure by Deep Learning Methods Applied to Smart City Camera Systems

卷积神经网络 智慧城市 计算机科学 可扩展性 深度学习 人工智能 集合(抽象数据类型) 机器学习 计算机视觉 计算机安全 物联网 数据库 程序设计语言
作者
Peng Sun,Gabriel Draughon,Rui Hou,Jerome P. Lynch
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:36 (4) 被引量:7
标识
DOI:10.1061/(asce)cp.1943-5487.0000998
摘要

With the emergence of the smart city, there is a growing need for scalable methods that sense how humans interact and use infrastructure in order to model social behaviors relevant to designing sustainable and resilient built environments. Cyber-physical system (CPS) frameworks used to monitor and automate infrastructure systems in smart cities can be extended to sense people to better understand how they use infrastructure systems including social infrastructure (e.g., parks, markets). This paper adopts convolutional neural network (CNN) architectures to automate the detection and spatiotemporal mapping of people using camera data to form a cyber-physical-social system (CPSS) for smart cities. The Mask region based convolutional neural network (R-CNN) detector was adopted and tailored to identify and segment human subjects in real time using camera images with an average speed of 7 frames per second. The Mask R-CNN framework was trained end to end using the Objects in Public Open Spaces (OPOS) image data set that includes classified segmentations of people in public spaces. A two-dimensional/three-dimensional (2D-3D) lifting algorithm based on a monocular camera calibration model was also employed to accurately position detected people in space. Finally, a Hungarian assignment algorithm based on association metrics extracted from detected people was used to assign people to spatiotemporal trajectories. To demonstrate the proposed framework, this study used the Detroit riverfront parks to study how people utilize community parks, which are a form of social infrastructure. The Mask R-CNN detector is proven precise in detecting and classifying the behavior of people in parks with mean average precision well above 85% for all class types defined in the OPOS library. The framework is also shown to be effective in spatially mapping the various uses of park furnishings, leading to better management of parks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
愤怒的豌豆完成签到,获得积分10
2秒前
風起天岚发布了新的文献求助10
2秒前
3秒前
1111发布了新的文献求助10
3秒前
3秒前
无敌的番茄炒蛋完成签到,获得积分0
4秒前
神勇中道完成签到,获得积分10
4秒前
NexusExplorer应助zxh采纳,获得10
4秒前
枫老板完成签到,获得积分10
5秒前
beiyangtidu发布了新的文献求助30
5秒前
6秒前
居然发布了新的文献求助10
6秒前
6秒前
良辰应助6666采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助糕糕采纳,获得10
8秒前
gjm完成签到,获得积分20
9秒前
zhuangxiong完成签到,获得积分10
9秒前
如此如此完成签到,获得积分20
9秒前
周先生完成签到,获得积分10
10秒前
marcie发布了新的文献求助10
10秒前
nn完成签到,获得积分10
10秒前
顾矜应助laochen采纳,获得10
11秒前
qunqing3发布了新的文献求助10
11秒前
dd完成签到,获得积分10
12秒前
12秒前
SciGPT应助居然采纳,获得10
13秒前
youzi发布了新的文献求助10
13秒前
冰魂应助kingmantj采纳,获得10
13秒前
14秒前
15秒前
16秒前
Orange应助瀚泛采纳,获得10
16秒前
qunqing3完成签到,获得积分10
17秒前
弩弩hannah完成签到,获得积分10
17秒前
共享精神应助JOEEVE采纳,获得10
17秒前
NPC-CBI完成签到,获得积分10
18秒前
vivi完成签到,获得积分10
19秒前
充电宝应助gxmu6322采纳,获得10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817476
求助须知:如何正确求助?哪些是违规求助? 3360822
关于积分的说明 10409731
捐赠科研通 3078922
什么是DOI,文献DOI怎么找? 1690869
邀请新用户注册赠送积分活动 814197
科研通“疑难数据库(出版商)”最低求助积分说明 768065