Melting temperature prediction via first principles and deep learning

计算机科学 化学空间 亚稳态 深度学习 算法 人工神经网络 计算科学 人工智能 化学 生物化学 有机化学 药物发现
作者
Qi‐Jun Hong
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:214: 111684-111684 被引量:20
标识
DOI:10.1016/j.commatsci.2022.111684
摘要

Melting is a high temperature process that requires extensive sampling of configuration space, thus making melting temperature prediction computationally very expensive and challenging. Over the past few years, I have built two methods to address this challenge, one via direct density functional theory (DFT) molecular dynamics (MD) simulations and the other via deep learning graph neural networks. The DFT approach is based on statistical analysis of small-size solid–liquid coexistence MD simulations. It eliminates the risk of metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Being both accurate and efficient (at the speed of several days per material), it is considered as one of the best methods for direct DFT melting temperature calculation. The deep learning method is based on graph neural networks that effectively handles permutation invariance in chemical formula, which drastically improves efficiency and reduces cost. At the speed of milliseconds per material, the model is extremely fast, while being moderately accurate, especially within the composition space expanded by the dataset. I have implemented both methods into automated computer code packages, making them publicly available and free to download. The DFT and deep learning methods are highly complementary to each other, and hence they can be potentially well integrated into a framework for melting temperature prediction. I demonstrated examples of applying the methods to materials design and discovery of high-melting-point materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
独特易形发布了新的文献求助10
2秒前
RockRedfoo完成签到 ,获得积分10
3秒前
5秒前
擦擦车发布了新的文献求助10
5秒前
wanci应助xiaobai采纳,获得10
7秒前
米糊发布了新的文献求助10
9秒前
9秒前
曹飒丽完成签到 ,获得积分10
12秒前
小二郎应助阿庭采纳,获得10
13秒前
黎泱完成签到 ,获得积分10
14秒前
14秒前
米糊完成签到,获得积分10
15秒前
曹飒丽关注了科研通微信公众号
15秒前
jenningseastera应助青晨采纳,获得10
16秒前
擦擦车完成签到,获得积分10
18秒前
19秒前
良月关注了科研通微信公众号
19秒前
诸葛御风应助Bressanone采纳,获得10
19秒前
上官若男应助舒适惜寒采纳,获得30
21秒前
时光里完成签到 ,获得积分10
23秒前
jenningseastera应助小龅牙吖采纳,获得10
24秒前
25秒前
25秒前
寒雨发布了新的文献求助10
26秒前
swimming完成签到 ,获得积分10
27秒前
28秒前
Struggle完成签到 ,获得积分10
31秒前
彼岸@发布了新的文献求助10
31秒前
dasfdufos发布了新的文献求助10
32秒前
未若柳絮因风起完成签到,获得积分10
32秒前
32秒前
he完成签到,获得积分10
32秒前
Lucas应助Miyo采纳,获得10
33秒前
领导范儿应助寒雨采纳,获得10
34秒前
min完成签到,获得积分10
34秒前
小鱼奈子发布了新的文献求助10
36秒前
阿庭完成签到,获得积分20
38秒前
脑洞疼应助dasfdufos采纳,获得10
38秒前
彼岸@完成签到,获得积分10
39秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797603
求助须知:如何正确求助?哪些是违规求助? 3342968
关于积分的说明 10314328
捐赠科研通 3059688
什么是DOI,文献DOI怎么找? 1679063
邀请新用户注册赠送积分活动 806307
科研通“疑难数据库(出版商)”最低求助积分说明 763095