已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Melting temperature prediction via first principles and deep learning

计算机科学 化学空间 亚稳态 深度学习 算法 人工神经网络 计算科学 人工智能 化学 生物化学 药物发现 有机化学
作者
Qi‐Jun Hong
出处
期刊:Computational Materials Science [Elsevier]
卷期号:214: 111684-111684 被引量:25
标识
DOI:10.1016/j.commatsci.2022.111684
摘要

Melting is a high temperature process that requires extensive sampling of configuration space, thus making melting temperature prediction computationally very expensive and challenging. Over the past few years, I have built two methods to address this challenge, one via direct density functional theory (DFT) molecular dynamics (MD) simulations and the other via deep learning graph neural networks. The DFT approach is based on statistical analysis of small-size solid–liquid coexistence MD simulations. It eliminates the risk of metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Being both accurate and efficient (at the speed of several days per material), it is considered as one of the best methods for direct DFT melting temperature calculation. The deep learning method is based on graph neural networks that effectively handles permutation invariance in chemical formula, which drastically improves efficiency and reduces cost. At the speed of milliseconds per material, the model is extremely fast, while being moderately accurate, especially within the composition space expanded by the dataset. I have implemented both methods into automated computer code packages, making them publicly available and free to download. The DFT and deep learning methods are highly complementary to each other, and hence they can be potentially well integrated into a framework for melting temperature prediction. I demonstrated examples of applying the methods to materials design and discovery of high-melting-point materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
kk完成签到 ,获得积分20
2秒前
4秒前
mimimi发布了新的文献求助10
4秒前
,。完成签到,获得积分10
6秒前
小人物的坚持完成签到 ,获得积分10
7秒前
大模型应助pinecone采纳,获得10
7秒前
vincen91完成签到,获得积分10
7秒前
kzy发布了新的文献求助10
10秒前
烟花应助十七采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
13秒前
kzy完成签到,获得积分10
15秒前
16秒前
搞笑煎蛋完成签到 ,获得积分10
17秒前
研友_Z729Mn发布了新的文献求助10
18秒前
想吃记忆面包完成签到 ,获得积分10
18秒前
19秒前
21秒前
22秒前
25秒前
25秒前
Evan完成签到 ,获得积分10
26秒前
Joey发布了新的文献求助10
26秒前
27秒前
晓晓发布了新的文献求助10
31秒前
咕咕鸡完成签到 ,获得积分10
32秒前
飞翔的臭猪完成签到,获得积分10
33秒前
TKTKW发布了新的文献求助30
34秒前
ding应助马rx采纳,获得10
34秒前
仁爱糖豆关注了科研通微信公众号
37秒前
漫漫完成签到 ,获得积分10
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418040
求助须知:如何正确求助?哪些是违规求助? 4533739
关于积分的说明 14142099
捐赠科研通 4450038
什么是DOI,文献DOI怎么找? 2441069
邀请新用户注册赠送积分活动 1432824
关于科研通互助平台的介绍 1410030