材料科学
选择性激光熔化
电子背散射衍射
微观结构
极限抗拉强度
复合材料
纹理(宇宙学)
断口学
各向异性
多孔性
万能试验机
光学
计算机科学
图像(数学)
物理
人工智能
标识
DOI:10.3221/igf-esis.60.26
摘要
The selective laser melting (SLM) technology is widely used to manufacture 316L stainless steel (SS) components for industrial applications. To understand the microstructure and the mechanical properties of additively manufactured 316L alloy, bulk materials were fabricated in longitudinal and transverse directions from which subset tensile specimens were then machine. Bulk materials were subjected to porosity detection with X-ray computed tomography and texture analysis with electron backscatter diffraction (EBSD). Microstructural investigations reveal that the SLM-built specimens had a porosity of 1.87%, and a preferential {110} orientation parallel to the build direction. The transverse specimens show significantly better properties in elastic modulus E (215.1±4.7GPa), yielding stress σy (548.2±8.3MPa) and ultimate tensile strength UTS (705.6±2.9MPa) than the longitudinal ones (E of 175.9±9.8GPa, σy of 495.3±15.5 and UTS of 608.8±3.6MPa). The anisotropic mechanical performance was attributed to the preferential {110} texture caused by thermal conditions during manufacturing and the embedded voids due to insufficient melting. A three-parameter Weibull distribution was adopted to further describe the mechanical anisotropy of SS316L based on stochastic experimental measurements. Fractography indicated the existence of manufacturing defects drive to premature failure of SS316L specimens—around half SS316L specimens failed of elongation less than 0.4.
科研通智能强力驱动
Strongly Powered by AbleSci AI