Individual automatic detection and identification of big cats with the combination of different body parts

人工智能 豹子 模式识别(心理学) 计算机科学 鉴定(生物学) 计算机视觉 卷积神经网络 老虎 特征(语言学) 面子(社会学概念) 分割 动物 生物 生态学 语言学 哲学 社会科学 计算机安全 社会学 捕食
作者
Chunmei Shi,Jing Xu,Nathan James Roberts,Dan Liu,Guangshun Jiang
出处
期刊:Integrative Zoology [Wiley]
卷期号:18 (1): 157-168 被引量:16
标识
DOI:10.1111/1749-4877.12641
摘要

Abstract The development of facial recognition technology has become an increasingly powerful tool in wild animal individual recognition. In this paper, we develop an automatic detection and recognition method with the combinations of body features of big cats based on the deep convolutional neural network (CNN). We collected dataset including 12 244 images from 47 individual Amur tigers ( Panthera tigris altaica ) at the Siberian Tiger Park by mobile phones and digital camera and 1940 images and videos of 12 individual wild Amur leopard ( Panthera pardus orientalis ) by infrared cameras. First, the single shot multibox detector algorithm is used to perform the automatic detection process of feature regions in each image. For the different feature regions of the image, like face stripe or spots, CNNs and multi‐layer perceptron models were applied to automatically identify tiger and leopard individuals, independently. Our results show that the identification accuracy of Amur tiger can reach up to 93.27% for face front, 93.33% for right body stripe, and 93.46% for left body stripe. Furthermore, the combination of right face, left body stripe, and right body stripe achieves the highest accuracy rate, up to 95.55%. Consequently, the combination of different body parts can improve the individual identification accuracy. However, it is not the higher the number of body parts, the higher the accuracy rate. The combination model with 3 body parts has the highest accuracy. The identification accuracy of Amur leopard can reach up to 86.90% for face front, 89.13% for left body spots, and 88.33% for right body spots. The accuracy of different body parts combination is lower than the independent part. For wild Amur leopard, the combination of face with body spot part is not helpful for the improvement of identification accuracy. The most effective identification part is still the independent left or right body spot part. It can be applied in long‐term monitoring of big cats, including big data analysis for animal behavior, and be helpful for the individual identification of other wildlife species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就的菀发布了新的文献求助10
1秒前
AA完成签到,获得积分10
1秒前
深情安青应助lili采纳,获得10
2秒前
FashionBoy应助42830采纳,获得10
2秒前
九零后无心完成签到,获得积分10
2秒前
ccc关注了科研通微信公众号
2秒前
wuxunxun2015发布了新的文献求助10
4秒前
5秒前
科研通AI6应助启思hh采纳,获得10
5秒前
zcc发布了新的文献求助10
6秒前
留白完成签到 ,获得积分10
8秒前
9秒前
9秒前
丘比特应助yyyyyy采纳,获得10
9秒前
10秒前
哈哈完成签到,获得积分10
10秒前
科研通AI6应助小小采纳,获得10
10秒前
情怀应助wuxunxun2015采纳,获得10
11秒前
英姑应助123采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
376完成签到,获得积分10
13秒前
CodeCraft应助明天会更好采纳,获得10
14秒前
14秒前
underunder完成签到,获得积分10
14秒前
可可完成签到,获得积分10
14秒前
42830发布了新的文献求助10
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
18秒前
NL_REMOTE完成签到,获得积分10
18秒前
大个应助尊敬代芹采纳,获得10
18秒前
dudu123发布了新的文献求助10
18秒前
19秒前
嘿嘿完成签到,获得积分10
19秒前
20秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Optics of Liquid Crystal Displays, 2nd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616536
求助须知:如何正确求助?哪些是违规求助? 4701013
关于积分的说明 14911505
捐赠科研通 4745289
什么是DOI,文献DOI怎么找? 2548870
邀请新用户注册赠送积分活动 1512149
关于科研通互助平台的介绍 1473972