清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Combination of Radiological and Clinical Baseline Data for Outcome Prediction of Patients With an Acute Ischemic Stroke

放射性武器 医学 基线(sea) 冲程(发动机) 缺血性中风 结果(博弈论) 内科学 心脏病学 缺血 放射科 工程类 数理经济学 地质学 数学 海洋学 机械工程
作者
Lucas A. Ramos,Hendrikus J. A. van Os,Adam Hilbert,Sílvia D. Olabarriaga,Aad van der Lugt,Yvo B.W.E.M. Roos,Wim H. van Zwam,Marianne A.A. van Walderveen,Marielle Ernst,A. H. Zwinderman,Gustav J. Strijkers,Charles B.L.M. Majoie,Marieke J.H. Wermer,Henk A. Marquering
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:13: 809343-809343 被引量:29
标识
DOI:10.3389/fneur.2022.809343
摘要

Background Accurate prediction of clinical outcome is of utmost importance for choices regarding the endovascular treatment (EVT) of acute stroke. Recent studies on the prediction modeling for stroke focused mostly on clinical characteristics and radiological scores available at baseline. Radiological images are composed of millions of voxels, and a lot of information can be lost when representing this information by a single value. Therefore, in this study we aimed at developing prediction models that take into account the whole imaging data combined with clinical data available at baseline. Methods We included 3,279 patients from the MR CLEAN Registry; a prospective, observational, multicenter registry of patients with ischemic stroke treated with EVT. We developed two approaches to combine the imaging data with the clinical data. The first approach was based on radiomics features, extracted from 70 atlas regions combined with the clinical data to train machine learning models. For the second approach, we trained 3D deep learning models using the whole images and the clinical data. Models trained with the clinical data only were compared with models trained with the combination of clinical and image data. Finally, we explored feature importance plots for the best models and identified many known variables and image features/brain regions that were relevant in the model decision process. Results From 3,279 patients included, 1,241 (37%) patients had a good functional outcome [modified Rankin Scale (mRS) ≤ 2] and 1,954 (60%) patients had good reperfusion [modified Thrombolysis in Cerebral Infarction (eTICI) ≥ 2b]. There was no significant improvement by combining the image data to the clinical data for mRS prediction [mean area under the receiver operating characteristic (ROC) curve (AUC) of 0.81 vs. 0.80] above using the clinical data only, regardless of the approach used. Regarding predicting reperfusion, there was a significant improvement when image and clinical features were combined (mean AUC of 0.54 vs. 0.61), with the highest AUC obtained by the deep learning approach. Conclusions The combination of radiomics and deep learning image features with clinical data significantly improved the prediction of good reperfusion. The visualization of prediction feature importance showed both known and novel clinical and imaging features with predictive values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shixx完成签到,获得积分10
16秒前
优美的莹芝完成签到,获得积分10
26秒前
Dr.Lee完成签到 ,获得积分10
1分钟前
1分钟前
shixx关注了科研通微信公众号
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shixx发布了新的文献求助10
1分钟前
iman完成签到,获得积分10
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
2分钟前
3分钟前
hzauhzau完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
香菜张完成签到,获得积分10
3分钟前
激动的似狮完成签到,获得积分10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
西柚柠檬完成签到 ,获得积分10
4分钟前
5分钟前
new1完成签到,获得积分10
5分钟前
6分钟前
tt完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
8分钟前
sidashu完成签到,获得积分10
8分钟前
8分钟前
vitamin完成签到 ,获得积分10
8分钟前
浮游应助刘书采纳,获得10
9分钟前
www完成签到,获得积分10
9分钟前
9分钟前
wise111发布了新的文献求助10
9分钟前
9分钟前
Bowman完成签到 ,获得积分10
9分钟前
shanshan完成签到,获得积分10
9分钟前
syntactyx发布了新的文献求助10
9分钟前
wise111发布了新的文献求助10
9分钟前
10分钟前
orixero应助wise111采纳,获得10
10分钟前
syntactyx完成签到,获得积分10
10分钟前
10分钟前
10分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5455177
求助须知:如何正确求助?哪些是违规求助? 4562338
关于积分的说明 14285041
捐赠科研通 4486347
什么是DOI,文献DOI怎么找? 2457319
邀请新用户注册赠送积分活动 1447914
关于科研通互助平台的介绍 1423253