PSTAF-GAN: Progressive Spatio-Temporal Attention Fusion Method Based on Generative Adversarial Network

计算机科学 图像分辨率 时间分辨率 水准点(测量) 人工智能 特征(语言学) 图像融合 模式识别(心理学) 特征提取 融合 像素 保险丝(电气) 遥感 图像(数学) 地理 地图学 语言学 哲学 物理 工程类 量子力学 电气工程
作者
Qiang Liu,Xiangchao Meng,Feng Shao,Shutao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:8
标识
DOI:10.1109/tgrs.2022.3161563
摘要

Spatio-temporal fusion aims to integrate multisource remote sensing images with complementary high spatial and temporal resolutions, so as to obtain time-series high spatial resolution fused images. Currently, deep learning (DL)-based spatio-temporal fusion methods have received broad attention. However, on one hand, most of the existing DL-based methods train the model in a band-by-band manner, ignoring the correlations among bands. On the other hand, the general coarse spatio-temporal changes in low spatial resolution images (e.g., MODIS) calculated at the pixel domain cannot completely cover the fine spatio-temporal changes in high spatial resolution images (e.g., Landsat), due to complex surface features and the general large spatial resolution ratio between fine and coarse images. Besides, the existing DL-based spatio-temporal fusion methods are insufficient in exploring multiscale information by only stacking convolutional kernels with different sizes. To alleviate the above challenges, we propose a progressive spatio-temporal attention fusion model in a multiband training manner based on generative adversarial network (PSTAF-GAN). Specifically, we design a flexible multiscale feature extraction architecture to extract multiscale feature hierarchies. Then, spatio-temporal changes are calculated on the feature domain in different feature hierarchies. Besides, a spatio-temporal attention fusion architecture is proposed to fuse the spatio-temporal changes and ground details in a coarse-to-fine manner, which can explore multiscale information more sufficient and gradually recover the target image. The results of quantitative and qualitative experiments on two publicly available benchmark datasets show that the proposed PSTAF-GAN can achieve the best performance compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美满的金连完成签到 ,获得积分10
刚刚
舒心靖琪完成签到 ,获得积分10
刚刚
CUREME完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
hm完成签到,获得积分10
3秒前
5秒前
zhuxd发布了新的文献求助10
8秒前
胡图完成签到,获得积分10
8秒前
Ethan完成签到,获得积分10
9秒前
巧克力完成签到 ,获得积分10
13秒前
sw完成签到,获得积分10
14秒前
李琛完成签到,获得积分10
15秒前
隐形曼青应助xun采纳,获得10
15秒前
zhuxd发布了新的文献求助10
21秒前
零四零零柒贰完成签到 ,获得积分10
22秒前
浅唱完成签到,获得积分10
22秒前
semiaa完成签到,获得积分10
22秒前
23秒前
Wangyn关注了科研通微信公众号
24秒前
安子完成签到 ,获得积分10
25秒前
超级玛丽完成签到 ,获得积分10
28秒前
搜集达人应助刘燕采纳,获得10
28秒前
啵啵啵小太阳完成签到,获得积分10
29秒前
29秒前
yuzhanli发布了新的文献求助10
30秒前
安静的乐松完成签到,获得积分10
30秒前
台台完成签到,获得积分10
30秒前
mumufan完成签到,获得积分10
31秒前
英姑应助毛毛球采纳,获得10
32秒前
搜集达人应助11222浅采纳,获得10
32秒前
李爱国应助科研通管家采纳,获得10
32秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
wy应助科研通管家采纳,获得10
32秒前
33秒前
赘婿应助科研通管家采纳,获得10
33秒前
orixero应助科研通管家采纳,获得10
33秒前
搜集达人应助科研通管家采纳,获得10
33秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801112
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330165
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807519
科研通“疑难数据库(出版商)”最低求助积分说明 763726