避障
模型预测控制
弹道
高斯过程
避碰
控制器(灌溉)
计算机科学
车辆动力学
人工智能
运动规划
控制工程
桥(图论)
控制理论(社会学)
工程类
机器学习
碰撞
高斯分布
控制(管理)
移动机器人
机器人
量子力学
物理
计算机安全
天文
生物
汽车工程
农学
医学
内科学
作者
Zhiyuan Li,Pan Zhao,Chunmao Jiang,Weixin Huang,Huawei Liang
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2022-03-16
卷期号:71 (6): 5944-5959
被引量:17
标识
DOI:10.1109/tvt.2022.3159994
摘要
This paper presents a learning-based model predictive trajectory planning controller for automated driving in unstructured, dynamic environments with obstacle avoidance. We first address the problem of lacking prior knowledge in unstructured environments by introducing a risk map that maps the density and motion of obstacles and the road to an occupancy risk. Model predictive control is then used to integrate trajectory planning and tracking control into one framework to bridge the gap between planning and control. Meanwhile, we use Gaussian Process (GP) regression to learn the residual model uncertainty for improving the model accuracy. An objective function considering both risks within the feasible region and vehicle dynamics is carefully formulated to obtain collision-free and kinematically-feasible local trajectories. Field experiments are performed on real unstructured environments with our automated vehicle. Experimental results demonstrate the effectiveness of the proposed algorithm for successful obstacle avoidance in various complex unstructured scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI