Abnormal vibration detection of wind turbine based on temporal convolution network and multivariate coefficient of variation

异常检测 机舱 涡轮机 计算机科学 振动 时间序列 多元统计 模式识别(心理学) 相关系数 人工智能 工程类 声学 机器学习 机械工程 物理
作者
Jun Zhan,Chengkun Wu,Xiandong Ma,Canqun Yang,Qiucheng Miao,Shilin Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:174: 109082-109082 被引量:34
标识
DOI:10.1016/j.ymssp.2022.109082
摘要

A working wind turbine generates a large amount of multivariate time-series data, which contain abundant operation state information and can predict impending anomalies. The anomaly detection of the wind turbine nacelle that houses all of the generating components in a turbine have been challenging due to its inherent complexities, systematic oscillations and noise. To address these problems, this paper proposes an unsupervised time-series anomaly detection approach, which combines deep learning with multi-parameter relative variability detection. A normal behavior model (NBM) of nacelle vibration is firstly built upon training normal historical data of the supervisory control and data acquisition (SCADA) system in the high-resolution domain. To better capture the temporal characteristics and frequency information of vibration signals, the vibration spectrum vector is integrated with the multivariate time-series data as inputs and the spectrum-embedded temporal convolutional network (SETCN) is then used to extract latent features. The anomalies are detected through a multi-variate coefficient of variation (MCV) based anomaly assessment index (AAI) of relative variability among vibration residuals and environment parameters of the nacelle. The approach considers the time-series characteristics of input data and preserves the spatio-temporal correlation between variables. Validations using data collected from real-world wind farms demonstrate the effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wtf52018完成签到,获得积分10
刚刚
情怀应助勤劳涵山采纳,获得10
刚刚
美满奇异果完成签到,获得积分10
4秒前
烟花应助颜值即正义采纳,获得10
4秒前
Vivian完成签到,获得积分10
5秒前
5秒前
外向含之完成签到,获得积分10
8秒前
隐形雁玉应助热情平凡采纳,获得10
8秒前
9秒前
猕猴桃完成签到,获得积分10
9秒前
桐桐应助genius采纳,获得30
11秒前
勇敢虫子不怕困难完成签到,获得积分10
11秒前
gigadrill发布了新的文献求助10
11秒前
14秒前
听风发布了新的文献求助10
14秒前
bc应助尼古拉斯丨大黑采纳,获得20
14秒前
16秒前
Jacky完成签到,获得积分10
18秒前
mj01完成签到,获得积分10
20秒前
cherish发布了新的文献求助10
20秒前
Drew11完成签到,获得积分10
20秒前
陈卓完成签到 ,获得积分10
21秒前
霸霸斌完成签到 ,获得积分10
21秒前
22秒前
在水一方应助DrW采纳,获得10
24秒前
gigadrill完成签到,获得积分10
25秒前
25秒前
喜悦松完成签到,获得积分10
25秒前
你好发布了新的文献求助10
26秒前
z11完成签到,获得积分10
26秒前
26秒前
28秒前
平淡寒梅发布了新的文献求助20
28秒前
28秒前
cherish完成签到,获得积分10
30秒前
31秒前
晨曦完成签到,获得积分10
31秒前
32秒前
尼古拉斯丨大黑完成签到,获得积分10
33秒前
35秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801615
求助须知:如何正确求助?哪些是违规求助? 3347409
关于积分的说明 10333569
捐赠科研通 3063591
什么是DOI,文献DOI怎么找? 1681910
邀请新用户注册赠送积分活动 807800
科研通“疑难数据库(出版商)”最低求助积分说明 763921