AccTFM: An Effective Intra-Layer Model Parallelization Strategy for Training Large-Scale Transformer-Based Models

计算机科学 瓶颈 计算 变压器 并行计算 计算机工程 量化(信号处理) 安全性令牌 分布式计算 正确性 算法 嵌入式系统 计算机网络 物理 量子力学 电压
作者
Zihao Zeng,Chubo Liu,Zhuo Tang,Kenli Li,Keqin Li
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 4326-4338 被引量:2
标识
DOI:10.1109/tpds.2022.3187815
摘要

Transformer-based deep neural networks have recently swept the field of natural language processing due to their outstanding performance, and are gradually spreading to more applications such as image/video processing. However, compared with general DNNs, training a sizeable transformer-based model is further time-consuming and memory-hungry. The existing distributed training strategies for general DNNs are not appropriate or can not efficiently handle transformer-based networks. In view of this, we propose an intra-layer model parallelization optimization strategy, AccTFM, which introduces a novel fine-grained pipeline execution and hybrid communication compression strategy to overcome the synchronization bottleneck. Specifically, on one hand, it first decouples the inter-layer computation and communication dependencies, and then searches for the optimal partitioning strategy to maximize the overlap of computation and communication. On the other hand, the hybrid communication compression module consists of token-level top- $k$ sparsification and piecewise quantization methods aiming at minimizing communication traffic. Experimental results show that AccTFM accelerates transformer-based DNNs training by up to 2.08x compared to state-of-the-art distributed training techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助漂亮的孤丹采纳,获得10
2秒前
超级的抽屉完成签到,获得积分10
3秒前
完美世界应助赖善若采纳,获得10
5秒前
正直美女发布了新的文献求助10
5秒前
6秒前
搜集达人应助布医采纳,获得10
9秒前
小二郎应助ZHY采纳,获得10
9秒前
Hello应助老迟到的友菱采纳,获得10
13秒前
清脆凡阳完成签到 ,获得积分10
14秒前
14秒前
15秒前
16秒前
16秒前
HH完成签到,获得积分20
16秒前
无花果应助正直美女采纳,获得10
17秒前
winner完成签到 ,获得积分10
17秒前
机灵的海蓝完成签到,获得积分10
18秒前
水木年华完成签到,获得积分10
19秒前
顾矜应助Kismet采纳,获得10
19秒前
枫亭完成签到 ,获得积分10
19秒前
追寻的白安完成签到,获得积分20
20秒前
juju发布了新的文献求助10
21秒前
penguin应助热心馒头采纳,获得10
21秒前
白路完成签到,获得积分10
21秒前
赖善若发布了新的文献求助10
21秒前
nuanyan1208发布了新的文献求助30
21秒前
Lds发布了新的文献求助10
22秒前
月半完成签到 ,获得积分10
23秒前
顺利毕业的小刘完成签到,获得积分20
24秒前
碎冰蓝发布了新的文献求助10
24秒前
26秒前
艾斯完成签到 ,获得积分10
29秒前
29秒前
29秒前
29秒前
30秒前
彭于晏应助Lds采纳,获得10
30秒前
31秒前
31秒前
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805370
求助须知:如何正确求助?哪些是违规求助? 3350335
关于积分的说明 10348557
捐赠科研通 3066264
什么是DOI,文献DOI怎么找? 1683641
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243