Plasma Metabolites Associated with a Protein‐Rich Dietary Pattern: Results from the OmniHeart Trial

代谢物 碳水化合物 膳食蛋白质 生物 植物蛋白 食品科学 生物化学 内分泌学
作者
Hyunju Kim,Alice H. Lichtenstein,Karen White,Kari E. Wong,Edgar R. Miller,Josef Coresh,Lawrence J. Appel,Casey M. Rebholz
出处
期刊:Molecular Nutrition & Food Research [Wiley]
卷期号:66 (6) 被引量:13
标识
DOI:10.1002/mnfr.202100890
摘要

Lack of biomarkers is a challenge for the accurate assessment of protein intake and interpretation of observational study data. The study aims to identify biomarkers of a protein-rich dietary pattern.The Optimal Macronutrient Intake Trial to Prevent Heart Disease (OmniHeart) trial is a randomized cross-over feeding study which tested three dietary patterns with varied macronutrient content (carbohydrate-rich; protein-rich with about half from plant sources; and unsaturated fat-rich). In 156 adults, differences in log-transformed plasma metabolite levels at the end of the protein- and carbohydrate-rich diet periods using paired t-tests is examined. Partial least-squares discriminant analysis is used to identify a set of metabolites which are influential in discriminating between the protein-rich versus carbohydrate-rich dietary patterns. Of 839 known metabolites, 102 metabolites differ significantly between the protein-rich and the carbohydrate-rich dietary patterns after Bonferroni correction, the majority of which are lipids (n = 35), amino acids (n = 27), and xenobiotics (n = 24). Metabolites which are the most influential in discriminating between the protein-rich and the carbohydrate-rich dietary patterns represent plant protein intake, food or beverage intake, and preparation methods.The study identifies many plasma metabolites associated with the protein-rich dietary pattern. If replicated, these metabolites may be used to assess level of adherence to a similar dietary pattern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赵一丁发布了新的文献求助10
1秒前
连秋发布了新的文献求助10
1秒前
PeilunLi发布了新的文献求助30
1秒前
2秒前
2秒前
2秒前
Imp完成签到,获得积分10
2秒前
amanda完成签到,获得积分20
2秒前
orixero应助dongfan采纳,获得10
2秒前
lucky珠完成签到 ,获得积分10
3秒前
胡茶茶完成签到 ,获得积分10
3秒前
3秒前
Kawhichan完成签到,获得积分10
4秒前
pangpang完成签到,获得积分10
4秒前
liufan完成签到 ,获得积分10
4秒前
4秒前
知不道完成签到,获得积分10
4秒前
三里墩头完成签到,获得积分10
4秒前
5秒前
CEJ发布了新的文献求助10
5秒前
lan发布了新的文献求助10
5秒前
寒鸦浮水完成签到,获得积分10
5秒前
楼上月完成签到 ,获得积分10
6秒前
6秒前
钟意发布了新的文献求助10
6秒前
英俊的铭应助badercao采纳,获得30
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得30
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Advanced Micropipette Techniques for Cell Physiology 200
Encyclopedia of Ocean Sciences Third Edition 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827705
求助须知:如何正确求助?哪些是违规求助? 3369930
关于积分的说明 10459808
捐赠科研通 3089768
什么是DOI,文献DOI怎么找? 1700053
邀请新用户注册赠送积分活动 817656
科研通“疑难数据库(出版商)”最低求助积分说明 770318