Machine learning‐based modeling in food processing applications: State of the art

计算机科学 食品加工 过程(计算) 能源消耗 食品工业 食品质量 人工智能 机器学习 工艺工程 工程类 政治学 食品科学 操作系统 电气工程 化学 法学
作者
Md. Imran H. Khan,Shyam S. Sablani,Richi Nayak,Yuantong Gu
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:21 (2): 1409-1438 被引量:63
标识
DOI:10.1111/1541-4337.12912
摘要

Abstract Food processing is a complex, multifaceted problem that requires substantial human interaction to optimize the various process parameters to minimize energy consumption and ensure better‐quality products. The development of a machine learning (ML)‐based approach to food processing applications is an exciting and innovative idea for optimizing process parameters and process kinetics to reduce energy consumption, processing time, and ensure better‐quality products; however, developing such a novel approach requires significant scientific effort. This paper presents and evaluates ML‐based approaches to various food processing operations such as drying, frying, baking, canning, extrusion, encapsulation, and fermentation to predict process kinetics. A step‐by‐step procedure to develop an ML‐based model and its practical implementation is presented. The key challenges of neural network training and testing algorithms and their limitations are discussed to assist readers in selecting algorithms for solving problems specific to food processing. In addition, this paper presents the potential and challenges of applying ML‐based techniques to hybrid food processing operations. The potential of physics‐informed ML modeling techniques for food processing applications and their strategies is also discussed. It is expected that the potential information of this paper will be valuable in advancing the ML‐based technology for food processing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追光鱼完成签到,获得积分10
刚刚
lll完成签到 ,获得积分10
刚刚
刚刚
李健应助甲烷采纳,获得30
刚刚
nnfreya发布了新的文献求助10
1秒前
1秒前
1秒前
多宝鱼发布了新的文献求助10
1秒前
1秒前
堆堆发布了新的文献求助10
2秒前
科研通AI5应助认真柠檬采纳,获得10
2秒前
静香发布了新的文献求助10
2秒前
RATHER发布了新的文献求助10
2秒前
3秒前
3秒前
陈chen发布了新的文献求助10
3秒前
机灵柚子应助雯雯采纳,获得20
3秒前
田様应助WHY采纳,获得10
4秒前
5秒前
赖向珊发布了新的文献求助10
5秒前
NexusExplorer应助chloe采纳,获得10
5秒前
litpand发布了新的文献求助10
5秒前
an发布了新的文献求助50
6秒前
我测你码发布了新的文献求助10
6秒前
6秒前
西瓜皮发布了新的文献求助30
6秒前
yaonan发布了新的文献求助10
7秒前
glscwd发布了新的文献求助30
7秒前
Qi发布了新的文献求助30
7秒前
希望天下0贩的0应助1234采纳,获得10
8秒前
miaoww完成签到,获得积分10
8秒前
8秒前
喷泡的兔子完成签到,获得积分10
8秒前
天天快乐应助田睿采纳,获得10
9秒前
nnfreya完成签到,获得积分10
10秒前
10秒前
11秒前
accept应助richael采纳,获得10
11秒前
所所应助自觉紫安采纳,获得10
12秒前
桃小昔发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790672
求助须知:如何正确求助?哪些是违规求助? 3335502
关于积分的说明 10275183
捐赠科研通 3052003
什么是DOI,文献DOI怎么找? 1674979
邀请新用户注册赠送积分活动 802968
科研通“疑难数据库(出版商)”最低求助积分说明 761001