Barrier Lyapunov function-based robot control with an augmented neural network approximator

控制理论(社会学) 人工神经网络 李雅普诺夫函数 计算机科学 乙状窦函数 补偿(心理学) 跟踪误差 弹道 Lyapunov稳定性 人工智能 控制(管理) 非线性系统 量子力学 物理 天文 心理学 精神分析
作者
Zuguo Zhang,Qingcong Wu,Xiong Li,Conghui Liang
出处
期刊:Industrial Robot-an International Journal [Emerald Publishing Limited]
卷期号:49 (2): 359-367 被引量:11
标识
DOI:10.1108/ir-06-2021-0114
摘要

Purpose Considering the complexity of dynamic and friction modeling, this paper aims to develop an adaptive trajectory tracking control scheme for robot manipulators in a universal unmodeled method, avoiding complicated modeling processes. Design/methodology/approach An augmented neural network (NN) constituted of radial basis function neural networks (RBFNNs) and additional sigmoid-jump activation function (SJF) neurons is introduced to approximate complicated dynamics of the system: the RBFNNs estimate the continuous dynamic term and SJF neurons handle the discontinuous friction torques. Moreover, the control algorithm is designed based on Barrier Lyapunov Function (BLF) to constrain output error. Findings Lyapunov stability analysis demonstrates the exponential stability of the closed-loop system and guarantees the tracking errors within predefined boundaries. The introduction of SJFs alleviates the limitation of RBFNNs on discontinuous function approximation. Owing to the fast learning speed of RBFNNs and jump response of SJFs, this modified NN approximator can reconstruct the system model accurately at a low compute cost, and thereby better tracking performance can be obtained. Experiments conducted on a manipulator verify the improvement and superiority of the proposed scheme in tracking performance and uncertainty compensation compared to a standard NN control scheme. Originality/value An enhanced NN approximator constituted of RBFNN and additional SJF neurons is presented which can compensate the continuous dynamic and discontinuous friction simultaneously. This control algorithm has potential usages in high-performance robots with unknown dynamic and variable friction. Furthermore, it is the first time to combine the augmented NN approximator with BLF. After more exact model compensation, a smaller tracking error is realized and a more stringent constraint of output error can be implemented. The proposed control scheme is applicable to some constraint occasion like an exoskeleton and surgical robot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助欧阳采纳,获得10
刚刚
努力的宁发布了新的文献求助10
1秒前
kilion发布了新的文献求助10
1秒前
情怀应助明天采纳,获得10
1秒前
简单的易云完成签到,获得积分10
1秒前
研友_LpvQlZ完成签到,获得积分10
1秒前
1秒前
宁燕完成签到,获得积分10
1秒前
科研小白完成签到,获得积分10
1秒前
良仔完成签到,获得积分10
2秒前
我恨WPS完成签到 ,获得积分10
2秒前
平常树叶完成签到,获得积分10
2秒前
2秒前
rainny发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
王乐多完成签到,获得积分10
3秒前
西格完成签到 ,获得积分10
3秒前
mila完成签到,获得积分10
3秒前
Naruto发布了新的文献求助10
3秒前
深情安青应助Suzyii采纳,获得50
4秒前
阳光的易真完成签到,获得积分10
4秒前
jiangmax发布了新的文献求助10
4秒前
4秒前
云朗完成签到,获得积分10
5秒前
廉凌波发布了新的文献求助10
5秒前
一叶知秋应助洛希极限采纳,获得10
5秒前
5秒前
5秒前
6秒前
努力的宁完成签到,获得积分10
7秒前
yh完成签到,获得积分10
7秒前
Joff_W完成签到,获得积分10
7秒前
fbb完成签到,获得积分20
8秒前
格物完成签到,获得积分10
9秒前
LLL完成签到,获得积分10
11秒前
骐骥完成签到,获得积分10
11秒前
11秒前
廉凌波完成签到,获得积分10
11秒前
王1完成签到,获得积分10
11秒前
明灯三千完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Life: The Science of Biology Digital Update 400
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4684061
求助须知:如何正确求助?哪些是违规求助? 4058862
关于积分的说明 12547670
捐赠科研通 3755007
什么是DOI,文献DOI怎么找? 2073947
邀请新用户注册赠送积分活动 1102794
科研通“疑难数据库(出版商)”最低求助积分说明 982095