Barrier Lyapunov function-based robot control with an augmented neural network approximator

控制理论(社会学) 人工神经网络 李雅普诺夫函数 计算机科学 乙状窦函数 补偿(心理学) 跟踪误差 弹道 Lyapunov稳定性 人工智能 控制(管理) 非线性系统 量子力学 物理 天文 心理学 精神分析
作者
Zhang Zuguo,Qingcong Wu,Xiong Li,Conghui Liang
出处
期刊:Industrial Robot-an International Journal [Emerald Publishing Limited]
卷期号:49 (2): 359-367 被引量:7
标识
DOI:10.1108/ir-06-2021-0114
摘要

Purpose Considering the complexity of dynamic and friction modeling, this paper aims to develop an adaptive trajectory tracking control scheme for robot manipulators in a universal unmodeled method, avoiding complicated modeling processes. Design/methodology/approach An augmented neural network (NN) constituted of radial basis function neural networks (RBFNNs) and additional sigmoid-jump activation function (SJF) neurons is introduced to approximate complicated dynamics of the system: the RBFNNs estimate the continuous dynamic term and SJF neurons handle the discontinuous friction torques. Moreover, the control algorithm is designed based on Barrier Lyapunov Function (BLF) to constrain output error. Findings Lyapunov stability analysis demonstrates the exponential stability of the closed-loop system and guarantees the tracking errors within predefined boundaries. The introduction of SJFs alleviates the limitation of RBFNNs on discontinuous function approximation. Owing to the fast learning speed of RBFNNs and jump response of SJFs, this modified NN approximator can reconstruct the system model accurately at a low compute cost, and thereby better tracking performance can be obtained. Experiments conducted on a manipulator verify the improvement and superiority of the proposed scheme in tracking performance and uncertainty compensation compared to a standard NN control scheme. Originality/value An enhanced NN approximator constituted of RBFNN and additional SJF neurons is presented which can compensate the continuous dynamic and discontinuous friction simultaneously. This control algorithm has potential usages in high-performance robots with unknown dynamic and variable friction. Furthermore, it is the first time to combine the augmented NN approximator with BLF. After more exact model compensation, a smaller tracking error is realized and a more stringent constraint of output error can be implemented. The proposed control scheme is applicable to some constraint occasion like an exoskeleton and surgical robot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助zoe采纳,获得10
1秒前
心灵的守望完成签到,获得积分10
2秒前
爆米花应助璿_采纳,获得10
3秒前
einuo发布了新的文献求助10
3秒前
wcp完成签到,获得积分10
4秒前
科研通AI5应助vic303采纳,获得10
6秒前
华仔应助852采纳,获得10
6秒前
8秒前
科研通AI5应助俊藏星河采纳,获得10
8秒前
无相完成签到 ,获得积分10
9秒前
FashionBoy应助Yacon采纳,获得10
9秒前
李健应助YAYA采纳,获得10
10秒前
10秒前
10秒前
FashionBoy应助某某采纳,获得10
11秒前
小廖同志发布了新的文献求助10
11秒前
12秒前
勤恳绝义发布了新的文献求助10
13秒前
16秒前
负责浩宇完成签到,获得积分10
16秒前
16秒前
镜中男人发布了新的文献求助10
16秒前
17秒前
阿伦艾弗森完成签到,获得积分10
17秒前
17秒前
宋治发布了新的文献求助10
18秒前
wwx完成签到,获得积分10
19秒前
qwerasd完成签到 ,获得积分10
19秒前
万能图书馆应助杨怡诗采纳,获得10
20秒前
啊露发布了新的文献求助10
21秒前
科研通AI2S应助caitlin采纳,获得10
21秒前
哈罗发布了新的文献求助30
22秒前
vic303发布了新的文献求助10
22秒前
22秒前
傻傻的磬完成签到 ,获得积分10
22秒前
852发布了新的文献求助10
23秒前
小廖同志完成签到,获得积分10
24秒前
勤恳绝义完成签到,获得积分20
25秒前
电致阿光完成签到,获得积分10
27秒前
务实小鸽子完成签到 ,获得积分10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803588
求助须知:如何正确求助?哪些是违规求助? 3348509
关于积分的说明 10338958
捐赠科研通 3064625
什么是DOI,文献DOI怎么找? 1682641
邀请新用户注册赠送积分活动 808381
科研通“疑难数据库(出版商)”最低求助积分说明 764038