An online alpha-thalassemia carrier discrimination model based on random forest and red blood cell parameters for low HbA2 cases

地中海贫血 随机森林 计算机科学 β地中海贫血 人工智能 线性判别分析 接收机工作特性 判别函数分析 试验装置 统计 机器学习 模式识别(心理学) 医学 数学 内科学
作者
Pinning Feng,Yuzhe Li,Zhihao Liao,Zhenrong Yao,Wenbin Lin,Shuhua Xie,Beini Hu,Chencui Huang,Wei Liu,Hongxu Xu,Min Liu,Wenjia Gan
出处
期刊:Clinica Chimica Acta [Elsevier BV]
卷期号:525: 1-5 被引量:15
标识
DOI:10.1016/j.cca.2021.12.003
摘要

Since screening of α-thalassemia carriers by low HbA2 has a low positive predictive value (PPV), the PPV was as low as 40.97% in our laboratory, other more effective screening methods need to be devised. This study aimed at developing a machine learning model by using red blood cell parameters to identify α-thalassemia carriers from low HbA2 patients.Laboratory data of 1213 patients with low HbA2 used for modeling was randomly divided into the training set (849 of 1213, 70%) and the internal validation set (364 of 1213, 30%). In addition, an external data set (n = 399) was used for model validation. Fourteen machine learning methods were applied to construct a discriminant model. Performance was evaluated with accuracy, sensitivity, specificity, etc. and compared with 7 previously published discriminant function formulae.The optimal model was based on random forest with 5 clinical features. The PPV of the model was more than twice the PPV of HbA2, and the model had a high negative predictive value (NPV) at the same time. Compared with seven formulae in screening of α-thalassemia carriers, the model had a better accuracy (0.915), specificity (0.967), NPV (0.901), PPV (0.942) and area under the receiver operating characteristic curve (AUC, 0.948) in the independent test set.Use of a random forest-based model enables rapid discrimination of α-thalassemia carriers from low HbA2 cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
科研通AI5应助when采纳,获得30
1秒前
3秒前
姜雪完成签到 ,获得积分10
3秒前
稳重的冬易完成签到,获得积分10
4秒前
4秒前
4秒前
Genius发布了新的文献求助10
4秒前
官方电话发布了新的文献求助10
4秒前
4秒前
Owen应助独特鸽子采纳,获得10
5秒前
核桃发布了新的文献求助10
5秒前
xingxingstar完成签到,获得积分10
6秒前
6秒前
7秒前
田様应助清秀凌蝶采纳,获得10
8秒前
浅听风吟应助majf采纳,获得10
8秒前
是希希啊a发布了新的文献求助10
8秒前
9秒前
务实亿先发布了新的文献求助10
10秒前
毕春宇发布了新的文献求助20
10秒前
roaring发布了新的文献求助10
10秒前
Orange应助CorisKen采纳,获得10
12秒前
12秒前
13秒前
13秒前
13秒前
8R60d8应助leeyehai采纳,获得10
13秒前
小白发布了新的文献求助10
14秒前
14秒前
14秒前
699565完成签到,获得积分10
15秒前
大个应助粗心的从露采纳,获得10
15秒前
16秒前
16秒前
科研小白白完成签到,获得积分10
17秒前
17秒前
pfeffer完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4759129
求助须知:如何正确求助?哪些是违规求助? 4100674
关于积分的说明 12688479
捐赠科研通 3815594
什么是DOI,文献DOI怎么找? 2106416
邀请新用户注册赠送积分活动 1131073
关于科研通互助平台的介绍 1009520