Fuzzy clustering of Acute Lymphoblastic Leukemia images assisted by Eagle strategy and morphological reconstruction

聚类分析 计算机科学 人工智能 初始化 模糊聚类 模糊逻辑 模式识别(心理学) 数据挖掘 分割 程序设计语言
作者
Arunita Das,Amrita Namtirtha,Animesh Dutta
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:239: 108008-108008 被引量:8
标识
DOI:10.1016/j.knosys.2021.108008
摘要

Patients with Acute Lymphoblastic Leukemia (ALL) require prompt diagnosis since it has the chance to become fatal if neglected for a few weeks. The microscopic image of lymphocyte cells creates doubts even for expert pathologists because normal lymphocytes cells and ALL blast cells are both very smooth. Therefore, proper segmentation of White Blood Cells (WBC) is a very crucial aspect of the task. Consequently, the focus of the study is on segmenting the WBCs in Acute Lymphoblastic Leukemia (ALL) images utilizing classical crisp and fuzzy clustering approaches like K-means (KM) and Fuzzy C-means (FCM). But these classical clustering approaches are very sensitive to noise and initial cluster center initialization and hence trapped in local optima. As a result, these techniques may produce incorrect cluster centers. Firstly, researchers are employing Nature-Inspired Optimization Algorithms (NIOAs) as an alternate methodology for both crisp and fuzzy clustering problems to solve the initial cluster center initialization issue. Therefore, using a two-stage Eagle Strategy based on Stochastic Fractal Search (SFS) method, this research proposes a fuzzy clustering methodology. Secondly, morphological reconstruction has been employed for filtering the membership matrix to guarantee noise-immunity. A scrupulous parallel study is performed among the proposed eagle strategy based fuzzy clustering depending on morphological reconstruction with some well-known NIOA based fuzzy clustering and crisp clustering approaches, and classical clustering methodologies like KM and FCM in view of a collection of color ALL images and regular performance metrics. Experimental results demonstrate that recommended ES-SFS based fuzzy clustering technique with morphological reconstruction surpasses the most of utilized approaches in words of computation effort, quality metrics, and robustness. Additionally, to get rid of the random effect in the achieved numerical results, a non-parametric strategy is used for statistical validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fox发布了新的文献求助10
1秒前
李羽茜完成签到 ,获得积分10
2秒前
duan发布了新的文献求助10
3秒前
4秒前
李健应助my采纳,获得10
4秒前
Yang发布了新的文献求助10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
Johnyang应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
6秒前
Adore应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
000完成签到,获得积分10
6秒前
长安完成签到 ,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
jiamei_wen发布了新的文献求助10
12秒前
烟花应助fox采纳,获得10
14秒前
lzy完成签到,获得积分10
14秒前
要不先吃饭完成签到,获得积分10
15秒前
kesong完成签到,获得积分10
16秒前
17秒前
充电宝应助贪玩访文采纳,获得10
20秒前
充电宝应助jiamei_wen采纳,获得20
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
坚强的紫菜完成签到 ,获得积分10
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
物理流体力学(第三版)西安交通大学出版社 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4259218
求助须知:如何正确求助?哪些是违规求助? 3792121
关于积分的说明 11894757
捐赠科研通 3440084
什么是DOI,文献DOI怎么找? 1887944
邀请新用户注册赠送积分活动 938741
科研通“疑难数据库(出版商)”最低求助积分说明 844192